| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnd |
|- ( k e. NN -> 2 e. CC ) |
| 2 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 3 |
|
nnmulcl |
|- ( ( k e. NN /\ ( k + 1 ) e. NN ) -> ( k x. ( k + 1 ) ) e. NN ) |
| 4 |
2 3
|
mpdan |
|- ( k e. NN -> ( k x. ( k + 1 ) ) e. NN ) |
| 5 |
4
|
nncnd |
|- ( k e. NN -> ( k x. ( k + 1 ) ) e. CC ) |
| 6 |
4
|
nnne0d |
|- ( k e. NN -> ( k x. ( k + 1 ) ) =/= 0 ) |
| 7 |
1 5 6
|
divrecd |
|- ( k e. NN -> ( 2 / ( k x. ( k + 1 ) ) ) = ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) ) |
| 8 |
7
|
sumeq2i |
|- sum_ k e. NN ( 2 / ( k x. ( k + 1 ) ) ) = sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 10 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 11 |
|
id |
|- ( n = k -> n = k ) |
| 12 |
|
oveq1 |
|- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
| 13 |
11 12
|
oveq12d |
|- ( n = k -> ( n x. ( n + 1 ) ) = ( k x. ( k + 1 ) ) ) |
| 14 |
13
|
oveq2d |
|- ( n = k -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 15 |
|
eqid |
|- ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
| 16 |
|
ovex |
|- ( 1 / ( k x. ( k + 1 ) ) ) e. _V |
| 17 |
14 15 16
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ` k ) = ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 18 |
17
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ` k ) = ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 19 |
4
|
nnrecred |
|- ( k e. NN -> ( 1 / ( k x. ( k + 1 ) ) ) e. RR ) |
| 20 |
19
|
recnd |
|- ( k e. NN -> ( 1 / ( k x. ( k + 1 ) ) ) e. CC ) |
| 21 |
20
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 1 / ( k x. ( k + 1 ) ) ) e. CC ) |
| 22 |
15
|
trireciplem |
|- seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) ~~> 1 |
| 23 |
22
|
a1i |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) ~~> 1 ) |
| 24 |
|
climrel |
|- Rel ~~> |
| 25 |
24
|
releldmi |
|- ( seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) ~~> 1 -> seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) e. dom ~~> ) |
| 26 |
23 25
|
syl |
|- ( T. -> seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) e. dom ~~> ) |
| 27 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 28 |
9 10 18 21 26 27
|
isummulc2 |
|- ( T. -> ( 2 x. sum_ k e. NN ( 1 / ( k x. ( k + 1 ) ) ) ) = sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) ) |
| 29 |
9 10 18 21 23
|
isumclim |
|- ( T. -> sum_ k e. NN ( 1 / ( k x. ( k + 1 ) ) ) = 1 ) |
| 30 |
29
|
oveq2d |
|- ( T. -> ( 2 x. sum_ k e. NN ( 1 / ( k x. ( k + 1 ) ) ) ) = ( 2 x. 1 ) ) |
| 31 |
28 30
|
eqtr3d |
|- ( T. -> sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) = ( 2 x. 1 ) ) |
| 32 |
31
|
mptru |
|- sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) = ( 2 x. 1 ) |
| 33 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 34 |
8 32 33
|
3eqtri |
|- sum_ k e. NN ( 2 / ( k x. ( k + 1 ) ) ) = 2 |