| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trireciplem.1 |
|
| 2 |
|
nnuz |
|
| 3 |
|
1zzd |
|
| 4 |
|
1cnd |
|
| 5 |
|
nnex |
|
| 6 |
5
|
mptex |
|
| 7 |
6
|
a1i |
|
| 8 |
|
oveq1 |
|
| 9 |
8
|
oveq2d |
|
| 10 |
|
eqid |
|
| 11 |
|
ovex |
|
| 12 |
9 10 11
|
fvmpt |
|
| 13 |
12
|
adantl |
|
| 14 |
2 3 4 3 7 13
|
divcnvshft |
|
| 15 |
|
seqex |
|
| 16 |
15
|
a1i |
|
| 17 |
|
peano2nn |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
nnrecred |
|
| 20 |
19
|
recnd |
|
| 21 |
13 20
|
eqeltrd |
|
| 22 |
13
|
oveq2d |
|
| 23 |
|
elfznn |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
nncnd |
|
| 26 |
|
peano2cn |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
peano2nn |
|
| 29 |
24 28
|
syl |
|
| 30 |
24 29
|
nnmulcld |
|
| 31 |
30
|
nncnd |
|
| 32 |
30
|
nnne0d |
|
| 33 |
27 25 31 32
|
divsubdird |
|
| 34 |
|
ax-1cn |
|
| 35 |
|
pncan2 |
|
| 36 |
25 34 35
|
sylancl |
|
| 37 |
36
|
oveq1d |
|
| 38 |
27
|
mulridd |
|
| 39 |
27 25
|
mulcomd |
|
| 40 |
38 39
|
oveq12d |
|
| 41 |
|
1cnd |
|
| 42 |
24
|
nnne0d |
|
| 43 |
29
|
nnne0d |
|
| 44 |
41 25 27 42 43
|
divcan5d |
|
| 45 |
40 44
|
eqtr3d |
|
| 46 |
25
|
mulridd |
|
| 47 |
46
|
oveq1d |
|
| 48 |
41 27 25 43 42
|
divcan5d |
|
| 49 |
47 48
|
eqtr3d |
|
| 50 |
45 49
|
oveq12d |
|
| 51 |
33 37 50
|
3eqtr3d |
|
| 52 |
51
|
sumeq2dv |
|
| 53 |
|
oveq2 |
|
| 54 |
|
oveq2 |
|
| 55 |
|
oveq2 |
|
| 56 |
|
1div1e1 |
|
| 57 |
55 56
|
eqtrdi |
|
| 58 |
|
oveq2 |
|
| 59 |
|
nnz |
|
| 60 |
59
|
adantl |
|
| 61 |
18 2
|
eleqtrdi |
|
| 62 |
|
elfznn |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
nnrecred |
|
| 65 |
64
|
recnd |
|
| 66 |
53 54 57 58 60 61 65
|
telfsum |
|
| 67 |
52 66
|
eqtrd |
|
| 68 |
|
id |
|
| 69 |
|
oveq1 |
|
| 70 |
68 69
|
oveq12d |
|
| 71 |
70
|
oveq2d |
|
| 72 |
|
ovex |
|
| 73 |
71 1 72
|
fvmpt |
|
| 74 |
24 73
|
syl |
|
| 75 |
|
simpr |
|
| 76 |
75 2
|
eleqtrdi |
|
| 77 |
30
|
nnrecred |
|
| 78 |
77
|
recnd |
|
| 79 |
74 76 78
|
fsumser |
|
| 80 |
22 67 79
|
3eqtr2rd |
|
| 81 |
2 3 14 4 16 21 80
|
climsubc2 |
|
| 82 |
81
|
mptru |
|
| 83 |
|
1m0e1 |
|
| 84 |
82 83
|
breqtri |
|