| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem13.1 | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | stirlinglem13.2 | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 3 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 4 | 2 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  𝐵  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( 𝑦  ∈  ran  𝐵  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 7 | 1 | stirlinglem2 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐴 ‘ 𝑛 )  ∈  ℝ+ ) | 
						
							| 8 | 7 | relogcld | ⊢ ( 𝑛  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 10 | 6 9 | eqeltrd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 11 | 10 | rexlimiva | ⊢ ( ∃ 𝑛  ∈  ℕ 𝑦  =  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 12 | 5 11 | sylbi | ⊢ ( 𝑦  ∈  ran  𝐵  →  𝑦  ∈  ℝ ) | 
						
							| 13 | 12 | ssriv | ⊢ ran  𝐵  ⊆  ℝ | 
						
							| 14 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 15 | 1 | stirlinglem2 | ⊢ ( 1  ∈  ℕ  →  ( 𝐴 ‘ 1 )  ∈  ℝ+ ) | 
						
							| 16 |  | relogcl | ⊢ ( ( 𝐴 ‘ 1 )  ∈  ℝ+  →  ( log ‘ ( 𝐴 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 17 | 14 15 16 | mp2b | ⊢ ( log ‘ ( 𝐴 ‘ 1 ) )  ∈  ℝ | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑛 1 | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑛 log | 
						
							| 20 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 21 | 1 20 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 22 | 21 18 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 1 ) | 
						
							| 23 | 19 22 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 1 ) ) | 
						
							| 24 |  | 2fveq3 | ⊢ ( 𝑛  =  1  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) ) | 
						
							| 25 | 18 23 24 2 | fvmptf | ⊢ ( ( 1  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ 1 ) )  ∈  ℝ )  →  ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) ) | 
						
							| 26 | 14 17 25 | mp2an | ⊢ ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑗  =  1  →  ( log ‘ ( 𝐴 ‘ 𝑗 ) )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) ) | 
						
							| 28 | 27 | rspceeqv | ⊢ ( ( 1  ∈  ℕ  ∧  ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 1 ) ) )  →  ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 29 | 14 26 28 | mp2an | ⊢ ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 30 | 26 17 | eqeltri | ⊢ ( 𝐵 ‘ 1 )  ∈  ℝ | 
						
							| 31 |  | nfcv | ⊢ Ⅎ 𝑗 ( log ‘ ( 𝐴 ‘ 𝑛 ) ) | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑛 𝑗 | 
						
							| 33 | 21 32 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑗 ) | 
						
							| 34 | 19 33 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 35 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑗  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 36 | 31 34 35 | cbvmpt | ⊢ ( 𝑛  ∈  ℕ  ↦  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) )  =  ( 𝑗  ∈  ℕ  ↦  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 37 | 2 36 | eqtri | ⊢ 𝐵  =  ( 𝑗  ∈  ℕ  ↦  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 38 | 37 | elrnmpt | ⊢ ( ( 𝐵 ‘ 1 )  ∈  ℝ  →  ( ( 𝐵 ‘ 1 )  ∈  ran  𝐵  ↔  ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) ) | 
						
							| 39 | 30 38 | ax-mp | ⊢ ( ( 𝐵 ‘ 1 )  ∈  ran  𝐵  ↔  ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 1 )  =  ( log ‘ ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 40 | 29 39 | mpbir | ⊢ ( 𝐵 ‘ 1 )  ∈  ran  𝐵 | 
						
							| 41 | 40 | ne0ii | ⊢ ran  𝐵  ≠  ∅ | 
						
							| 42 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 43 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 44 | 42 43 | rereccli | ⊢ ( 1  /  4 )  ∈  ℝ | 
						
							| 45 | 30 44 | resubcli | ⊢ ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ∈  ℝ | 
						
							| 46 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( 𝑛  ·  ( 𝑛  +  1 ) ) ) ) | 
						
							| 47 | 1 2 46 | stirlinglem12 | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 48 | 47 | rgen | ⊢ ∀ 𝑗  ∈  ℕ ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ≤  ( 𝐵 ‘ 𝑗 ) | 
						
							| 49 |  | breq1 | ⊢ ( 𝑥  =  ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  →  ( 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ↔  ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ≤  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 50 | 49 | ralbidv | ⊢ ( 𝑥  =  ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  →  ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ↔  ∀ 𝑗  ∈  ℕ ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ≤  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 51 | 50 | rspcev | ⊢ ( ( ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ∈  ℝ  ∧  ∀ 𝑗  ∈  ℕ ( ( 𝐵 ‘ 1 )  −  ( 1  /  4 ) )  ≤  ( 𝐵 ‘ 𝑗 ) )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 52 | 45 48 51 | mp2an | ⊢ ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 ) | 
						
							| 53 |  | simpr | ⊢ ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  →  𝑦  ∈  ran  𝐵 ) | 
						
							| 54 | 8 | rgen | ⊢ ∀ 𝑛  ∈  ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  ℝ | 
						
							| 55 | 2 | fnmpt | ⊢ ( ∀ 𝑛  ∈  ℕ ( log ‘ ( 𝐴 ‘ 𝑛 ) )  ∈  ℝ  →  𝐵  Fn  ℕ ) | 
						
							| 56 |  | fvelrnb | ⊢ ( 𝐵  Fn  ℕ  →  ( 𝑦  ∈  ran  𝐵  ↔  ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 𝑗 )  =  𝑦 ) ) | 
						
							| 57 | 54 55 56 | mp2b | ⊢ ( 𝑦  ∈  ran  𝐵  ↔  ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 𝑗 )  =  𝑦 ) | 
						
							| 58 | 53 57 | sylib | ⊢ ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  →  ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 𝑗 )  =  𝑦 ) | 
						
							| 59 |  | nfra1 | ⊢ Ⅎ 𝑗 ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 ) | 
						
							| 60 |  | nfv | ⊢ Ⅎ 𝑗 𝑦  ∈  ran  𝐵 | 
						
							| 61 | 59 60 | nfan | ⊢ Ⅎ 𝑗 ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 ) | 
						
							| 62 |  | nfv | ⊢ Ⅎ 𝑗 𝑥  ≤  𝑦 | 
						
							| 63 |  | simp1l | ⊢ ( ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  ( 𝐵 ‘ 𝑗 )  =  𝑦 )  →  ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 64 |  | simp2 | ⊢ ( ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  ( 𝐵 ‘ 𝑗 )  =  𝑦 )  →  𝑗  ∈  ℕ ) | 
						
							| 65 |  | rsp | ⊢ ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  →  ( 𝑗  ∈  ℕ  →  𝑥  ≤  ( 𝐵 ‘ 𝑗 ) ) ) | 
						
							| 66 | 63 64 65 | sylc | ⊢ ( ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  ( 𝐵 ‘ 𝑗 )  =  𝑦 )  →  𝑥  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 67 |  | simp3 | ⊢ ( ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  ( 𝐵 ‘ 𝑗 )  =  𝑦 )  →  ( 𝐵 ‘ 𝑗 )  =  𝑦 ) | 
						
							| 68 | 66 67 | breqtrd | ⊢ ( ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  ∧  𝑗  ∈  ℕ  ∧  ( 𝐵 ‘ 𝑗 )  =  𝑦 )  →  𝑥  ≤  𝑦 ) | 
						
							| 69 | 68 | 3exp | ⊢ ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  →  ( 𝑗  ∈  ℕ  →  ( ( 𝐵 ‘ 𝑗 )  =  𝑦  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 70 | 61 62 69 | rexlimd | ⊢ ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  →  ( ∃ 𝑗  ∈  ℕ ( 𝐵 ‘ 𝑗 )  =  𝑦  →  𝑥  ≤  𝑦 ) ) | 
						
							| 71 | 58 70 | mpd | ⊢ ( ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  ∧  𝑦  ∈  ran  𝐵 )  →  𝑥  ≤  𝑦 ) | 
						
							| 72 | 71 | ralrimiva | ⊢ ( ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  →  ∀ 𝑦  ∈  ran  𝐵 𝑥  ≤  𝑦 ) | 
						
							| 73 | 72 | reximi | ⊢ ( ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐵 𝑥  ≤  𝑦 ) | 
						
							| 74 | 52 73 | ax-mp | ⊢ ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐵 𝑥  ≤  𝑦 | 
						
							| 75 |  | infrecl | ⊢ ( ( ran  𝐵  ⊆  ℝ  ∧  ran  𝐵  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ran  𝐵 𝑥  ≤  𝑦 )  →  inf ( ran  𝐵 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 76 | 13 41 74 75 | mp3an | ⊢ inf ( ran  𝐵 ,  ℝ ,   <  )  ∈  ℝ | 
						
							| 77 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 78 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 79 | 2 8 | fmpti | ⊢ 𝐵 : ℕ ⟶ ℝ | 
						
							| 80 | 79 | a1i | ⊢ ( ⊤  →  𝐵 : ℕ ⟶ ℝ ) | 
						
							| 81 |  | peano2nn | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 82 | 1 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  𝐴  =  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  𝑛  =  ( 𝑗  +  1 ) ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( ! ‘ 𝑛 )  =  ( ! ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 85 | 83 | oveq2d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( 2  ·  𝑛 )  =  ( 2  ·  ( 𝑗  +  1 ) ) ) | 
						
							| 86 | 85 | fveq2d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( √ ‘ ( 2  ·  𝑛 ) )  =  ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 87 | 83 | oveq1d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( 𝑛  /  e )  =  ( ( 𝑗  +  1 )  /  e ) ) | 
						
							| 88 | 87 83 | oveq12d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( ( 𝑛  /  e ) ↑ 𝑛 )  =  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) ) | 
						
							| 89 | 86 88 | oveq12d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) )  =  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) ) ) | 
						
							| 90 | 84 89 | oveq12d | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  =  ( 𝑗  +  1 ) )  →  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) )  =  ( ( ! ‘ ( 𝑗  +  1 ) )  /  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 91 | 81 | nnnn0d | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℕ0 ) | 
						
							| 92 |  | faccl | ⊢ ( ( 𝑗  +  1 )  ∈  ℕ0  →  ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℕ ) | 
						
							| 93 |  | nncn | ⊢ ( ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℕ  →  ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℂ ) | 
						
							| 94 | 91 92 93 | 3syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℂ ) | 
						
							| 95 |  | 2cnd | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 96 |  | nncn | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℂ ) | 
						
							| 97 |  | 1cnd | ⊢ ( 𝑗  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 98 | 96 97 | addcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℂ ) | 
						
							| 99 | 95 98 | mulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  ( 𝑗  +  1 ) )  ∈  ℂ ) | 
						
							| 100 | 99 | sqrtcld | ⊢ ( 𝑗  ∈  ℕ  →  ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 101 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 102 | 101 | recni | ⊢ e  ∈  ℂ | 
						
							| 103 | 102 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  e  ∈  ℂ ) | 
						
							| 104 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 105 |  | epos | ⊢ 0  <  e | 
						
							| 106 | 104 105 | gtneii | ⊢ e  ≠  0 | 
						
							| 107 | 106 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  e  ≠  0 ) | 
						
							| 108 | 98 103 107 | divcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑗  +  1 )  /  e )  ∈  ℂ ) | 
						
							| 109 | 108 91 | expcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) )  ∈  ℂ ) | 
						
							| 110 | 100 109 | mulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) )  ∈  ℂ ) | 
						
							| 111 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 112 | 111 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 113 |  | nnre | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℝ ) | 
						
							| 114 | 104 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 115 |  | 1red | ⊢ ( 𝑗  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 116 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 117 | 116 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  0  ≤  1 ) | 
						
							| 118 |  | nnge1 | ⊢ ( 𝑗  ∈  ℕ  →  1  ≤  𝑗 ) | 
						
							| 119 | 114 115 113 117 118 | letrd | ⊢ ( 𝑗  ∈  ℕ  →  0  ≤  𝑗 ) | 
						
							| 120 | 113 119 | ge0p1rpd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℝ+ ) | 
						
							| 121 | 112 120 | rpmulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 122 | 121 | sqrtgt0d | ⊢ ( 𝑗  ∈  ℕ  →  0  <  ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) ) ) | 
						
							| 123 | 122 | gt0ne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ≠  0 ) | 
						
							| 124 | 81 | nnne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ≠  0 ) | 
						
							| 125 | 98 103 124 107 | divne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑗  +  1 )  /  e )  ≠  0 ) | 
						
							| 126 |  | nnz | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ ) | 
						
							| 127 | 126 | peano2zd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℤ ) | 
						
							| 128 | 108 125 127 | expne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) )  ≠  0 ) | 
						
							| 129 | 100 109 123 128 | mulne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) )  ≠  0 ) | 
						
							| 130 | 94 110 129 | divcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ! ‘ ( 𝑗  +  1 ) )  /  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) ) )  ∈  ℂ ) | 
						
							| 131 | 82 90 81 130 | fvmptd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  =  ( ( ! ‘ ( 𝑗  +  1 ) )  /  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 132 |  | nnrp | ⊢ ( ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℕ  →  ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 133 | 91 92 132 | 3syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ! ‘ ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 134 | 121 | rpsqrtcld | ⊢ ( 𝑗  ∈  ℕ  →  ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 135 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 136 | 135 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  e  ∈  ℝ+ ) | 
						
							| 137 | 120 136 | rpdivcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 𝑗  +  1 )  /  e )  ∈  ℝ+ ) | 
						
							| 138 | 137 127 | rpexpcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 139 | 134 138 | rpmulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 140 | 133 139 | rpdivcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ! ‘ ( 𝑗  +  1 ) )  /  ( ( √ ‘ ( 2  ·  ( 𝑗  +  1 ) ) )  ·  ( ( ( 𝑗  +  1 )  /  e ) ↑ ( 𝑗  +  1 ) ) ) )  ∈  ℝ+ ) | 
						
							| 141 | 131 140 | eqeltrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∈  ℝ+ ) | 
						
							| 142 | 141 | relogcld | ⊢ ( 𝑗  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 143 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗  +  1 ) | 
						
							| 144 | 21 143 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑗  +  1 ) ) | 
						
							| 145 | 19 144 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 146 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑗  +  1 )  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 147 | 143 145 146 2 | fvmptf | ⊢ ( ( ( 𝑗  +  1 )  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 148 | 81 142 147 | syl2anc | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 149 | 148 142 | eqeltrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 150 | 79 | ffvelcdmi | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 151 |  | eqid | ⊢ ( 𝑧  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑧 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ↑ ( 2  ·  𝑧 ) ) ) )  =  ( 𝑧  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑧 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ↑ ( 2  ·  𝑧 ) ) ) ) | 
						
							| 152 | 1 2 151 | stirlinglem11 | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  <  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 153 | 149 150 152 | ltled | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 154 | 153 | adantl | ⊢ ( ( ⊤  ∧  𝑗  ∈  ℕ )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 155 | 52 | a1i | ⊢ ( ⊤  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  ℕ 𝑥  ≤  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 156 | 77 78 80 154 155 | climinf | ⊢ ( ⊤  →  𝐵  ⇝  inf ( ran  𝐵 ,  ℝ ,   <  ) ) | 
						
							| 157 | 156 | mptru | ⊢ 𝐵  ⇝  inf ( ran  𝐵 ,  ℝ ,   <  ) | 
						
							| 158 |  | breq2 | ⊢ ( 𝑑  =  inf ( ran  𝐵 ,  ℝ ,   <  )  →  ( 𝐵  ⇝  𝑑  ↔  𝐵  ⇝  inf ( ran  𝐵 ,  ℝ ,   <  ) ) ) | 
						
							| 159 | 158 | rspcev | ⊢ ( ( inf ( ran  𝐵 ,  ℝ ,   <  )  ∈  ℝ  ∧  𝐵  ⇝  inf ( ran  𝐵 ,  ℝ ,   <  ) )  →  ∃ 𝑑  ∈  ℝ 𝐵  ⇝  𝑑 ) | 
						
							| 160 | 76 157 159 | mp2an | ⊢ ∃ 𝑑  ∈  ℝ 𝐵  ⇝  𝑑 |