| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem11.1 | ⊢ 𝐴  =  ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 2 |  | stirlinglem11.2 | ⊢ 𝐵  =  ( 𝑛  ∈  ℕ  ↦  ( log ‘ ( 𝐴 ‘ 𝑛 ) ) ) | 
						
							| 3 |  | stirlinglem11.3 | ⊢ 𝐾  =  ( 𝑘  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) ) ) | 
						
							| 4 |  | 0red | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 5 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  𝐾  =  ( 𝑘  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) ) ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  1 )  →  𝑘  =  1 ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  1 )  →  ( 2  ·  𝑘 )  =  ( 2  ·  1 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  1 )  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  1 )  +  1 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  1 )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  1 )  +  1 ) ) ) | 
						
							| 10 | 7 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  1 )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) ) ) | 
						
							| 11 | 9 10 | oveq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  =  1 )  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) )  =  ( ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) ) ) ) | 
						
							| 12 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℕ ) | 
						
							| 14 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 15 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 16 | 14 15 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  1 )  ∈  ℂ ) | 
						
							| 17 | 16 15 | addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  1 )  +  1 )  ∈  ℂ ) | 
						
							| 18 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 19 | 18 | oveq1i | ⊢ ( ( 2  ·  1 )  +  1 )  =  ( 2  +  1 ) | 
						
							| 20 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 21 | 19 20 | eqtri | ⊢ ( ( 2  ·  1 )  +  1 )  =  3 | 
						
							| 22 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 23 | 21 22 | eqnetri | ⊢ ( ( 2  ·  1 )  +  1 )  ≠  0 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  1 )  +  1 )  ≠  0 ) | 
						
							| 25 | 17 24 | reccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ∈  ℂ ) | 
						
							| 26 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 27 | 14 26 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 28 | 27 15 | addcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℂ ) | 
						
							| 29 |  | 1red | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 30 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 31 | 30 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 32 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 33 | 31 32 | remulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 34 | 33 29 | readdcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℝ ) | 
						
							| 35 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  1 ) | 
						
							| 37 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 38 | 37 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 39 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 40 | 38 39 | rpmulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  𝑁 )  ∈  ℝ+ ) | 
						
							| 41 | 29 40 | ltaddrp2d | ⊢ ( 𝑁  ∈  ℕ  →  1  <  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 42 | 4 29 34 36 41 | lttrd | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( ( 2  ·  𝑁 )  +  1 ) ) | 
						
							| 43 | 42 | gt0ne0d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  ≠  0 ) | 
						
							| 44 | 28 43 | reccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℂ ) | 
						
							| 45 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 46 | 45 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 47 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 48 | 47 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℕ0 ) | 
						
							| 49 | 46 48 | nn0mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  1 )  ∈  ℕ0 ) | 
						
							| 50 | 44 49 | expcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) )  ∈  ℂ ) | 
						
							| 51 | 25 50 | mulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) ) )  ∈  ℂ ) | 
						
							| 52 | 5 11 13 51 | fvmptd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾 ‘ 1 )  =  ( ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) ) ) ) | 
						
							| 53 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 54 | 30 53 | remulcli | ⊢ ( 2  ·  1 )  ∈  ℝ | 
						
							| 55 | 54 53 | readdcli | ⊢ ( ( 2  ·  1 )  +  1 )  ∈  ℝ | 
						
							| 56 | 55 23 | rereccli | ⊢ ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ∈  ℝ | 
						
							| 57 | 56 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ∈  ℝ ) | 
						
							| 58 | 34 43 | rereccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℝ ) | 
						
							| 59 | 58 49 | reexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) )  ∈  ℝ ) | 
						
							| 60 | 57 59 | remulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) ) )  ∈  ℝ ) | 
						
							| 61 | 52 60 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾 ‘ 1 )  ∈  ℝ ) | 
						
							| 62 | 1 | stirlinglem2 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐴 ‘ 𝑁 )  ∈  ℝ+ ) | 
						
							| 63 | 62 | relogcld | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑛 𝑁 | 
						
							| 65 |  | nfcv | ⊢ Ⅎ 𝑛 log | 
						
							| 66 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ  ↦  ( ( ! ‘ 𝑛 )  /  ( ( √ ‘ ( 2  ·  𝑛 ) )  ·  ( ( 𝑛  /  e ) ↑ 𝑛 ) ) ) ) | 
						
							| 67 | 1 66 | nfcxfr | ⊢ Ⅎ 𝑛 𝐴 | 
						
							| 68 | 67 64 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ 𝑁 ) | 
						
							| 69 | 65 68 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ 𝑁 ) ) | 
						
							| 70 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑁  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | 
						
							| 71 | 64 69 70 2 | fvmptf | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ 𝑁 ) )  ∈  ℝ )  →  ( 𝐵 ‘ 𝑁 )  =  ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | 
						
							| 72 | 63 71 | mpdan | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ 𝑁 )  =  ( log ‘ ( 𝐴 ‘ 𝑁 ) ) ) | 
						
							| 73 | 72 63 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 74 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 75 | 1 | stirlinglem2 | ⊢ ( ( 𝑁  +  1 )  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑁  +  1 ) )  ∈  ℝ+ ) | 
						
							| 76 | 74 75 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐴 ‘ ( 𝑁  +  1 ) )  ∈  ℝ+ ) | 
						
							| 77 | 76 | relogcld | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ ( 𝐴 ‘ ( 𝑁  +  1 ) ) )  ∈  ℝ ) | 
						
							| 78 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑁  +  1 ) | 
						
							| 79 | 67 78 | nffv | ⊢ Ⅎ 𝑛 ( 𝐴 ‘ ( 𝑁  +  1 ) ) | 
						
							| 80 | 65 79 | nffv | ⊢ Ⅎ 𝑛 ( log ‘ ( 𝐴 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 81 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑁  +  1 )  →  ( log ‘ ( 𝐴 ‘ 𝑛 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 82 | 78 80 81 2 | fvmptf | ⊢ ( ( ( 𝑁  +  1 )  ∈  ℕ  ∧  ( log ‘ ( 𝐴 ‘ ( 𝑁  +  1 ) ) )  ∈  ℝ )  →  ( 𝐵 ‘ ( 𝑁  +  1 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 83 | 74 77 82 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑁  +  1 ) )  =  ( log ‘ ( 𝐴 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 84 | 83 77 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑁  +  1 ) )  ∈  ℝ ) | 
						
							| 85 | 73 84 | resubcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  ∈  ℝ ) | 
						
							| 86 | 31 29 | remulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  1 )  ∈  ℝ ) | 
						
							| 87 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 88 | 87 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  2 ) | 
						
							| 89 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 90 | 89 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  1 ) | 
						
							| 91 | 31 29 88 90 | mulge0d | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( 2  ·  1 ) ) | 
						
							| 92 | 86 91 | ge0p1rpd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  1 )  +  1 )  ∈  ℝ+ ) | 
						
							| 93 | 92 | rpreccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 94 | 39 | rpge0d | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  𝑁 ) | 
						
							| 95 | 31 32 88 94 | mulge0d | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 96 | 33 95 | ge0p1rpd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℝ+ ) | 
						
							| 97 | 96 | rpreccld | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 98 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 99 | 98 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℤ ) | 
						
							| 100 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 101 | 100 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℤ ) | 
						
							| 102 | 99 101 | zmulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  1 )  ∈  ℤ ) | 
						
							| 103 | 97 102 | rpexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) )  ∈  ℝ+ ) | 
						
							| 104 | 93 103 | rpmulcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  /  ( ( 2  ·  1 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  1 ) ) )  ∈  ℝ+ ) | 
						
							| 105 | 52 104 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾 ‘ 1 )  ∈  ℝ+ ) | 
						
							| 106 | 105 | rpgt0d | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( 𝐾 ‘ 1 ) ) | 
						
							| 107 | 85 61 | resubcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( 𝐾 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 108 |  | eqid | ⊢ ( ℤ≥ ‘ ( 1  +  1 ) )  =  ( ℤ≥ ‘ ( 1  +  1 ) ) | 
						
							| 109 | 101 | peano2zd | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  +  1 )  ∈  ℤ ) | 
						
							| 110 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 111 | 3 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝐾  =  ( 𝑘  ∈  ℕ  ↦  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) ) ) ) | 
						
							| 112 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 2  ·  𝑘 )  =  ( 2  ·  𝑗 ) ) | 
						
							| 113 | 112 | oveq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 114 | 113 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 115 | 112 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) )  =  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 116 | 114 115 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  ∧  𝑘  =  𝑗 )  →  ( ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑘 ) ) )  =  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 118 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ ) | 
						
							| 119 |  | 2cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 120 |  | nncn | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℂ ) | 
						
							| 121 | 120 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℂ ) | 
						
							| 122 | 119 121 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 2  ·  𝑗 )  ∈  ℂ ) | 
						
							| 123 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 124 | 122 123 | addcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℂ ) | 
						
							| 125 |  | 0red | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  0  ∈  ℝ ) | 
						
							| 126 |  | 1red | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 127 | 30 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  2  ∈  ℝ ) | 
						
							| 128 |  | nnre | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℝ ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℝ ) | 
						
							| 130 | 127 129 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 2  ·  𝑗 )  ∈  ℝ ) | 
						
							| 131 | 130 126 | readdcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 132 | 35 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  0  <  1 ) | 
						
							| 133 | 37 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  2  ∈  ℝ+ ) | 
						
							| 134 |  | nnrp | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℝ+ ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℝ+ ) | 
						
							| 136 | 133 135 | rpmulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 2  ·  𝑗 )  ∈  ℝ+ ) | 
						
							| 137 | 126 136 | ltaddrp2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  1  <  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 138 | 125 126 131 132 137 | lttrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  0  <  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 139 | 138 | gt0ne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  0 ) | 
						
							| 140 | 124 139 | reccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ∈  ℂ ) | 
						
							| 141 | 26 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 142 | 119 141 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 2  ·  𝑁 )  ∈  ℂ ) | 
						
							| 143 | 142 123 | addcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℂ ) | 
						
							| 144 | 43 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  +  1 )  ≠  0 ) | 
						
							| 145 | 143 144 | reccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℂ ) | 
						
							| 146 | 45 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  2  ∈  ℕ0 ) | 
						
							| 147 |  | nnnn0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ0 ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ0 ) | 
						
							| 149 | 146 148 | nn0mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 2  ·  𝑗 )  ∈  ℕ0 ) | 
						
							| 150 | 145 149 | expcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) )  ∈  ℂ ) | 
						
							| 151 | 140 150 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 152 | 111 117 118 151 | fvmptd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 )  =  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 153 |  | 0red | ⊢ ( 𝑗  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 154 |  | 1red | ⊢ ( 𝑗  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 155 | 30 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 156 | 155 128 | remulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  𝑗 )  ∈  ℝ ) | 
						
							| 157 | 156 154 | readdcld | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 158 | 35 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  0  <  1 ) | 
						
							| 159 | 37 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 160 | 159 134 | rpmulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  𝑗 )  ∈  ℝ+ ) | 
						
							| 161 | 154 160 | ltaddrp2d | ⊢ ( 𝑗  ∈  ℕ  →  1  <  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 162 | 153 154 157 158 161 | lttrd | ⊢ ( 𝑗  ∈  ℕ  →  0  <  ( ( 2  ·  𝑗 )  +  1 ) ) | 
						
							| 163 | 162 | gt0ne0d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  0 ) | 
						
							| 164 | 163 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  0 ) | 
						
							| 165 | 124 164 | reccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ∈  ℂ ) | 
						
							| 166 | 165 150 | mulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 167 | 152 166 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ )  →  ( 𝐾 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 168 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 1  +  ( 2  ·  𝑛 ) )  /  2 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ( 1  +  ( 2  ·  𝑛 ) )  /  2 )  ·  ( log ‘ ( ( 𝑛  +  1 )  /  𝑛 ) ) )  −  1 ) ) | 
						
							| 169 | 1 2 168 3 | stirlinglem9 | ⊢ ( 𝑁  ∈  ℕ  →  seq 1 (  +  ,  𝐾 )  ⇝  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 170 | 110 13 167 169 | clim2ser | ⊢ ( 𝑁  ∈  ℕ  →  seq ( 1  +  1 ) (  +  ,  𝐾 )  ⇝  ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( seq 1 (  +  ,  𝐾 ) ‘ 1 ) ) ) | 
						
							| 171 |  | peano2nn | ⊢ ( 1  ∈  ℕ  →  ( 1  +  1 )  ∈  ℕ ) | 
						
							| 172 |  | uznnssnn | ⊢ ( ( 1  +  1 )  ∈  ℕ  →  ( ℤ≥ ‘ ( 1  +  1 ) )  ⊆  ℕ ) | 
						
							| 173 | 12 171 172 | mp2b | ⊢ ( ℤ≥ ‘ ( 1  +  1 ) )  ⊆  ℕ | 
						
							| 174 | 173 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( ℤ≥ ‘ ( 1  +  1 ) )  ⊆  ℕ ) | 
						
							| 175 | 174 | sseld | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  𝑗  ∈  ℕ ) ) | 
						
							| 176 | 175 | imdistani | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ℕ ) ) | 
						
							| 177 | 176 152 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 𝐾 ‘ 𝑗 )  =  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 178 | 30 | a1i | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  2  ∈  ℝ ) | 
						
							| 179 |  | eluzelre | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 180 | 178 179 | remulcld | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  ( 2  ·  𝑗 )  ∈  ℝ ) | 
						
							| 181 |  | 1red | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  1  ∈  ℝ ) | 
						
							| 182 | 180 181 | readdcld | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℝ ) | 
						
							| 183 | 173 | sseli | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 184 | 183 163 | syl | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  ( ( 2  ·  𝑗 )  +  1 )  ≠  0 ) | 
						
							| 185 | 182 184 | rereccld | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ∈  ℝ ) | 
						
							| 186 | 185 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ∈  ℝ ) | 
						
							| 187 | 34 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℝ ) | 
						
							| 188 | 43 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( ( 2  ·  𝑁 )  +  1 )  ≠  0 ) | 
						
							| 189 | 187 188 | rereccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) )  ∈  ℝ ) | 
						
							| 190 | 176 149 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 2  ·  𝑗 )  ∈  ℕ0 ) | 
						
							| 191 | 189 190 | reexpcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) )  ∈  ℝ ) | 
						
							| 192 | 186 191 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) )  ∈  ℝ ) | 
						
							| 193 | 177 192 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 𝐾 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 194 |  | 1red | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  1  ∈  ℝ ) | 
						
							| 195 | 30 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  2  ∈  ℝ ) | 
						
							| 196 | 176 129 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  𝑗  ∈  ℝ ) | 
						
							| 197 | 195 196 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 2  ·  𝑗 )  ∈  ℝ ) | 
						
							| 198 | 87 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  2 ) | 
						
							| 199 |  | 0red | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  0  ∈  ℝ ) | 
						
							| 200 | 87 | a1i | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  0  ≤  2 ) | 
						
							| 201 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 202 |  | eluzle | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  ( 1  +  1 )  ≤  𝑗 ) | 
						
							| 203 | 201 202 | eqbrtrrid | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  2  ≤  𝑗 ) | 
						
							| 204 | 199 178 179 200 203 | letrd | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) )  →  0  ≤  𝑗 ) | 
						
							| 205 | 204 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  𝑗 ) | 
						
							| 206 | 195 196 198 205 | mulge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( 2  ·  𝑗 ) ) | 
						
							| 207 | 197 206 | ge0p1rpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( ( 2  ·  𝑗 )  +  1 )  ∈  ℝ+ ) | 
						
							| 208 | 89 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  1 ) | 
						
							| 209 | 194 207 208 | divge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 210 | 32 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 211 | 195 210 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( 2  ·  𝑁 )  ∈  ℝ ) | 
						
							| 212 | 94 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  𝑁 ) | 
						
							| 213 | 195 210 198 212 | mulge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( 2  ·  𝑁 ) ) | 
						
							| 214 | 211 213 | ge0p1rpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  ( ( 2  ·  𝑁 )  +  1 )  ∈  ℝ+ ) | 
						
							| 215 | 194 214 208 | divge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ) | 
						
							| 216 | 189 190 215 | expge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 217 | 186 191 209 216 | mulge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( ( 1  /  ( ( 2  ·  𝑗 )  +  1 ) )  ·  ( ( 1  /  ( ( 2  ·  𝑁 )  +  1 ) ) ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 218 | 217 177 | breqtrrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) )  →  0  ≤  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 219 | 108 109 170 193 218 | iserge0 | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( seq 1 (  +  ,  𝐾 ) ‘ 1 ) ) ) | 
						
							| 220 |  | seq1 | ⊢ ( 1  ∈  ℤ  →  ( seq 1 (  +  ,  𝐾 ) ‘ 1 )  =  ( 𝐾 ‘ 1 ) ) | 
						
							| 221 | 100 220 | mp1i | ⊢ ( 𝑁  ∈  ℕ  →  ( seq 1 (  +  ,  𝐾 ) ‘ 1 )  =  ( 𝐾 ‘ 1 ) ) | 
						
							| 222 | 221 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( seq 1 (  +  ,  𝐾 ) ‘ 1 ) )  =  ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( 𝐾 ‘ 1 ) ) ) | 
						
							| 223 | 219 222 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( 𝐾 ‘ 1 ) ) ) | 
						
							| 224 | 4 107 61 223 | leadd1dd | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  +  ( 𝐾 ‘ 1 ) )  ≤  ( ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( 𝐾 ‘ 1 ) )  +  ( 𝐾 ‘ 1 ) ) ) | 
						
							| 225 | 52 51 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾 ‘ 1 )  ∈  ℂ ) | 
						
							| 226 | 225 | addlidd | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  +  ( 𝐾 ‘ 1 ) )  =  ( 𝐾 ‘ 1 ) ) | 
						
							| 227 | 73 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 228 | 84 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑁  +  1 ) )  ∈  ℂ ) | 
						
							| 229 | 227 228 | subcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  ∈  ℂ ) | 
						
							| 230 | 229 225 | npcand | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) )  −  ( 𝐾 ‘ 1 ) )  +  ( 𝐾 ‘ 1 ) )  =  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 231 | 224 226 230 | 3brtr3d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐾 ‘ 1 )  ≤  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 232 | 4 61 85 106 231 | ltletrd | ⊢ ( 𝑁  ∈  ℕ  →  0  <  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 233 | 84 73 | posdifd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝐵 ‘ ( 𝑁  +  1 ) )  <  ( 𝐵 ‘ 𝑁 )  ↔  0  <  ( ( 𝐵 ‘ 𝑁 )  −  ( 𝐵 ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 234 | 232 233 | mpbird | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝐵 ‘ ( 𝑁  +  1 ) )  <  ( 𝐵 ‘ 𝑁 ) ) |