Metamath Proof Explorer


Theorem iserge0

Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 𝑍 = ( ℤ𝑀 )
iserge0.2 ( 𝜑𝑀 ∈ ℤ )
iserge0.3 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
iserge0.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
iserge0.5 ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( 𝐹𝑘 ) )
Assertion iserge0 ( 𝜑 → 0 ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 clim2ser.1 𝑍 = ( ℤ𝑀 )
2 iserge0.2 ( 𝜑𝑀 ∈ ℤ )
3 iserge0.3 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
4 iserge0.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
5 iserge0.5 ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( 𝐹𝑘 ) )
6 serclim0 ( 𝑀 ∈ ℤ → seq 𝑀 ( + , ( ( ℤ𝑀 ) × { 0 } ) ) ⇝ 0 )
7 2 6 syl ( 𝜑 → seq 𝑀 ( + , ( ( ℤ𝑀 ) × { 0 } ) ) ⇝ 0 )
8 simpr ( ( 𝜑𝑘𝑍 ) → 𝑘𝑍 )
9 8 1 eleqtrdi ( ( 𝜑𝑘𝑍 ) → 𝑘 ∈ ( ℤ𝑀 ) )
10 c0ex 0 ∈ V
11 10 fvconst2 ( 𝑘 ∈ ( ℤ𝑀 ) → ( ( ( ℤ𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 )
12 9 11 syl ( ( 𝜑𝑘𝑍 ) → ( ( ( ℤ𝑀 ) × { 0 } ) ‘ 𝑘 ) = 0 )
13 0re 0 ∈ ℝ
14 12 13 eqeltrdi ( ( 𝜑𝑘𝑍 ) → ( ( ( ℤ𝑀 ) × { 0 } ) ‘ 𝑘 ) ∈ ℝ )
15 12 5 eqbrtrd ( ( 𝜑𝑘𝑍 ) → ( ( ( ℤ𝑀 ) × { 0 } ) ‘ 𝑘 ) ≤ ( 𝐹𝑘 ) )
16 1 2 7 3 14 4 15 iserle ( 𝜑 → 0 ≤ 𝐴 )