Metamath Proof Explorer


Theorem stirlinglem12

Description: The sequence B is bounded below. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem12.1 A=nn!2nnen
stirlinglem12.2 B=nlogAn
stirlinglem12.3 F=n1nn+1
Assertion stirlinglem12 NB114BN

Proof

Step Hyp Ref Expression
1 stirlinglem12.1 A=nn!2nnen
2 stirlinglem12.2 B=nlogAn
3 stirlinglem12.3 F=n1nn+1
4 1nn 1
5 1 stirlinglem2 1A1+
6 relogcl A1+logA1
7 4 5 6 mp2b logA1
8 nfcv _n1
9 nfcv _nlog
10 nfmpt1 _nnn!2nnen
11 1 10 nfcxfr _nA
12 11 8 nffv _nA1
13 9 12 nffv _nlogA1
14 2fveq3 n=1logAn=logA1
15 8 13 14 2 fvmptf 1logA1B1=logA1
16 4 7 15 mp2an B1=logA1
17 16 7 eqeltri B1
18 17 a1i NB1
19 1 stirlinglem2 NAN+
20 19 relogcld NlogAN
21 nfcv _nN
22 11 21 nffv _nAN
23 9 22 nffv _nlogAN
24 2fveq3 n=NlogAn=logAN
25 21 23 24 2 fvmptf NlogANBN=logAN
26 20 25 mpdan NBN=logAN
27 26 20 eqeltrd NBN
28 4re 4
29 4ne0 40
30 28 29 rereccli 14
31 30 a1i N14
32 fveq2 k=jBk=Bj
33 fveq2 k=j+1Bk=Bj+1
34 fveq2 k=1Bk=B1
35 fveq2 k=NBk=BN
36 elnnuz NN1
37 36 biimpi NN1
38 elfznn k1Nk
39 1 stirlinglem2 kAk+
40 38 39 syl k1NAk+
41 40 relogcld k1NlogAk
42 nfcv _nk
43 11 42 nffv _nAk
44 9 43 nffv _nlogAk
45 2fveq3 n=klogAn=logAk
46 42 44 45 2 fvmptf klogAkBk=logAk
47 38 41 46 syl2anc k1NBk=logAk
48 47 adantl Nk1NBk=logAk
49 40 rpcnd k1NAk
50 49 adantl Nk1NAk
51 39 rpne0d kAk0
52 38 51 syl k1NAk0
53 52 adantl Nk1NAk0
54 50 53 logcld Nk1NlogAk
55 48 54 eqeltrd Nk1NBk
56 32 33 34 35 37 55 telfsumo Nj1..^NBjBj+1=B1BN
57 nnz NN
58 fzoval N1..^N=1N1
59 57 58 syl N1..^N=1N1
60 59 sumeq1d Nj1..^NBjBj+1=j=1N1BjBj+1
61 56 60 eqtr3d NB1BN=j=1N1BjBj+1
62 fzfid N1N1Fin
63 elfznn j1N1j
64 63 adantl Nj1N1j
65 1 stirlinglem2 jAj+
66 65 relogcld jlogAj
67 nfcv _nj
68 11 67 nffv _nAj
69 9 68 nffv _nlogAj
70 2fveq3 n=jlogAn=logAj
71 67 69 70 2 fvmptf jlogAjBj=logAj
72 66 71 mpdan jBj=logAj
73 72 66 eqeltrd jBj
74 64 73 syl Nj1N1Bj
75 peano2nn jj+1
76 1 stirlinglem2 j+1Aj+1+
77 75 76 syl jAj+1+
78 77 relogcld jlogAj+1
79 nfcv _nj+1
80 11 79 nffv _nAj+1
81 9 80 nffv _nlogAj+1
82 2fveq3 n=j+1logAn=logAj+1
83 79 81 82 2 fvmptf j+1logAj+1Bj+1=logAj+1
84 75 78 83 syl2anc jBj+1=logAj+1
85 84 78 eqeltrd jBj+1
86 63 85 syl j1N1Bj+1
87 86 adantl Nj1N1Bj+1
88 74 87 resubcld Nj1N1BjBj+1
89 62 88 fsumrecl Nj=1N1BjBj+1
90 30 a1i Nj1N114
91 63 nnred j1N1j
92 1red j1N11
93 91 92 readdcld j1N1j+1
94 91 93 remulcld j1N1jj+1
95 91 recnd j1N1j
96 1cnd j1N11
97 95 96 addcld j1N1j+1
98 63 nnne0d j1N1j0
99 75 nnne0d jj+10
100 63 99 syl j1N1j+10
101 95 97 98 100 mulne0d j1N1jj+10
102 94 101 rereccld j1N11jj+1
103 102 adantl Nj1N11jj+1
104 90 103 remulcld Nj1N1141jj+1
105 62 104 fsumrecl Nj=1N1141jj+1
106 eqid i12i+112j+12i=i12i+112j+12i
107 eqid i12j+12i=i12j+12i
108 1 2 106 107 stirlinglem10 jBjBj+1141jj+1
109 64 108 syl Nj1N1BjBj+1141jj+1
110 62 88 104 109 fsumle Nj=1N1BjBj+1j=1N1141jj+1
111 62 103 fsumrecl Nj=1N11jj+1
112 1red N1
113 4pos 0<4
114 28 113 elrpii 4+
115 114 a1i N4+
116 0red N0
117 0lt1 0<1
118 117 a1i N0<1
119 116 112 118 ltled N01
120 112 115 119 divge0d N014
121 eqid N=N
122 eluznn NjNj
123 3 a1i jF=n1nn+1
124 simpr jn=jn=j
125 124 oveq1d jn=jn+1=j+1
126 124 125 oveq12d jn=jnn+1=jj+1
127 126 oveq2d jn=j1nn+1=1jj+1
128 id jj
129 nnre jj
130 1red j1
131 129 130 readdcld jj+1
132 129 131 remulcld jjj+1
133 nncn jj
134 1cnd j1
135 133 134 addcld jj+1
136 nnne0 jj0
137 133 135 136 99 mulne0d jjj+10
138 132 137 rereccld j1jj+1
139 123 127 128 138 fvmptd jFj=1jj+1
140 122 139 syl NjNFj=1jj+1
141 122 nnred NjNj
142 1red NjN1
143 141 142 readdcld NjNj+1
144 141 143 remulcld NjNjj+1
145 141 recnd NjNj
146 1cnd NjN1
147 145 146 addcld NjNj+1
148 122 nnne0d NjNj0
149 122 99 syl NjNj+10
150 145 147 148 149 mulne0d NjNjj+10
151 144 150 rereccld NjN1jj+1
152 seqeq1 N=1seqN+F=seq1+F
153 3 trireciplem seq1+F1
154 climrel Rel
155 154 releldmi seq1+F1seq1+Fdom
156 153 155 mp1i N=1seq1+Fdom
157 152 156 eqeltrd N=1seqN+Fdom
158 157 adantl NN=1seqN+Fdom
159 simpl N¬N=1N
160 simpr N¬N=1¬N=1
161 elnn1uz2 NN=1N2
162 159 161 sylib N¬N=1N=1N2
163 162 ord N¬N=1¬N=1N2
164 160 163 mpd N¬N=1N2
165 uz2m1nn N2N1
166 164 165 syl N¬N=1N1
167 nncn NN
168 167 adantr NN1N
169 1cnd NN11
170 168 169 npcand NN1N-1+1=N
171 170 eqcomd NN1N=N-1+1
172 171 seqeq1d NN1seqN+F=seqN-1+1+F
173 nnuz =1
174 id N1N1
175 138 recnd j1jj+1
176 139 175 eqeltrd jFj
177 176 adantl N1jFj
178 153 a1i N1seq1+F1
179 173 174 177 178 clim2ser N1seqN-1+1+F1seq1+FN1
180 179 adantl NN1seqN-1+1+F1seq1+FN1
181 172 180 eqbrtrd NN1seqN+F1seq1+FN1
182 154 releldmi seqN+F1seq1+FN1seqN+Fdom
183 181 182 syl NN1seqN+Fdom
184 159 166 183 syl2anc N¬N=1seqN+Fdom
185 158 184 pm2.61dan NseqN+Fdom
186 121 57 140 151 185 isumrecl NjN1jj+1
187 122 nnrpd NjNj+
188 187 rpge0d NjN0j
189 141 188 ge0p1rpd NjNj+1+
190 187 189 rpmulcld NjNjj+1+
191 119 adantr NjN01
192 142 190 191 divge0d NjN01jj+1
193 121 57 140 151 185 192 isumge0 N0jN1jj+1
194 116 186 111 193 leadd2dd Nj=1N11jj+1+0j=1N11jj+1+jN1jj+1
195 111 recnd Nj=1N11jj+1
196 195 addridd Nj=1N11jj+1+0=j=1N11jj+1
197 196 eqcomd Nj=1N11jj+1=j=1N11jj+1+0
198 id NN
199 139 adantl NjFj=1jj+1
200 133 adantl Njj
201 1cnd Nj1
202 200 201 addcld Njj+1
203 200 202 mulcld Njjj+1
204 136 adantl Njj0
205 99 adantl Njj+10
206 200 202 204 205 mulne0d Njjj+10
207 203 206 reccld Nj1jj+1
208 153 155 mp1i Nseq1+Fdom
209 173 121 198 199 207 208 isumsplit Nj1jj+1=j=1N11jj+1+jN1jj+1
210 194 197 209 3brtr4d Nj=1N11jj+1j1jj+1
211 1zzd 1
212 139 adantl jFj=1jj+1
213 175 adantl j1jj+1
214 153 a1i seq1+F1
215 173 211 212 213 214 isumclim j1jj+1=1
216 215 mptru j1jj+1=1
217 210 216 breqtrdi Nj=1N11jj+11
218 111 112 31 120 217 lemul2ad N14j=1N11jj+1141
219 4cn 4
220 219 a1i N4
221 113 a1i N0<4
222 221 gt0ne0d N40
223 220 222 reccld N14
224 103 recnd Nj1N11jj+1
225 62 223 224 fsummulc2 N14j=1N11jj+1=j=1N1141jj+1
226 223 mulridd N141=14
227 218 225 226 3brtr3d Nj=1N1141jj+114
228 89 105 31 110 227 letrd Nj=1N1BjBj+114
229 61 228 eqbrtrd NB1BN14
230 18 27 31 229 subled NB114BN