Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Stirling's approximation formula for ` n ` factorial
stirlinglem12
Next ⟩
stirlinglem13
Metamath Proof Explorer
Ascii
Unicode
Theorem
stirlinglem12
Description:
The sequence
B
is bounded below.
(Contributed by
Glauco Siliprandi
, 29-Jun-2017)
Ref
Expression
Hypotheses
stirlinglem12.1
⊢
A
=
n
∈
ℕ
⟼
n
!
2
n
n
e
n
stirlinglem12.2
⊢
B
=
n
∈
ℕ
⟼
log
A
n
stirlinglem12.3
⊢
F
=
n
∈
ℕ
⟼
1
n
n
+
1
Assertion
stirlinglem12
⊢
N
∈
ℕ
→
B
1
−
1
4
≤
B
N
Proof
Step
Hyp
Ref
Expression
1
stirlinglem12.1
⊢
A
=
n
∈
ℕ
⟼
n
!
2
n
n
e
n
2
stirlinglem12.2
⊢
B
=
n
∈
ℕ
⟼
log
A
n
3
stirlinglem12.3
⊢
F
=
n
∈
ℕ
⟼
1
n
n
+
1
4
1nn
⊢
1
∈
ℕ
5
1
stirlinglem2
⊢
1
∈
ℕ
→
A
1
∈
ℝ
+
6
relogcl
⊢
A
1
∈
ℝ
+
→
log
A
1
∈
ℝ
7
4
5
6
mp2b
⊢
log
A
1
∈
ℝ
8
nfcv
⊢
Ⅎ
_
n
1
9
nfcv
⊢
Ⅎ
_
n
log
10
nfmpt1
⊢
Ⅎ
_
n
n
∈
ℕ
⟼
n
!
2
n
n
e
n
11
1
10
nfcxfr
⊢
Ⅎ
_
n
A
12
11
8
nffv
⊢
Ⅎ
_
n
A
1
13
9
12
nffv
⊢
Ⅎ
_
n
log
A
1
14
2fveq3
⊢
n
=
1
→
log
A
n
=
log
A
1
15
8
13
14
2
fvmptf
⊢
1
∈
ℕ
∧
log
A
1
∈
ℝ
→
B
1
=
log
A
1
16
4
7
15
mp2an
⊢
B
1
=
log
A
1
17
16
7
eqeltri
⊢
B
1
∈
ℝ
18
17
a1i
⊢
N
∈
ℕ
→
B
1
∈
ℝ
19
1
stirlinglem2
⊢
N
∈
ℕ
→
A
N
∈
ℝ
+
20
19
relogcld
⊢
N
∈
ℕ
→
log
A
N
∈
ℝ
21
nfcv
⊢
Ⅎ
_
n
N
22
11
21
nffv
⊢
Ⅎ
_
n
A
N
23
9
22
nffv
⊢
Ⅎ
_
n
log
A
N
24
2fveq3
⊢
n
=
N
→
log
A
n
=
log
A
N
25
21
23
24
2
fvmptf
⊢
N
∈
ℕ
∧
log
A
N
∈
ℝ
→
B
N
=
log
A
N
26
20
25
mpdan
⊢
N
∈
ℕ
→
B
N
=
log
A
N
27
26
20
eqeltrd
⊢
N
∈
ℕ
→
B
N
∈
ℝ
28
4re
⊢
4
∈
ℝ
29
4ne0
⊢
4
≠
0
30
28
29
rereccli
⊢
1
4
∈
ℝ
31
30
a1i
⊢
N
∈
ℕ
→
1
4
∈
ℝ
32
fveq2
⊢
k
=
j
→
B
k
=
B
j
33
fveq2
⊢
k
=
j
+
1
→
B
k
=
B
j
+
1
34
fveq2
⊢
k
=
1
→
B
k
=
B
1
35
fveq2
⊢
k
=
N
→
B
k
=
B
N
36
elnnuz
⊢
N
∈
ℕ
↔
N
∈
ℤ
≥
1
37
36
biimpi
⊢
N
∈
ℕ
→
N
∈
ℤ
≥
1
38
elfznn
⊢
k
∈
1
…
N
→
k
∈
ℕ
39
1
stirlinglem2
⊢
k
∈
ℕ
→
A
k
∈
ℝ
+
40
38
39
syl
⊢
k
∈
1
…
N
→
A
k
∈
ℝ
+
41
40
relogcld
⊢
k
∈
1
…
N
→
log
A
k
∈
ℝ
42
nfcv
⊢
Ⅎ
_
n
k
43
11
42
nffv
⊢
Ⅎ
_
n
A
k
44
9
43
nffv
⊢
Ⅎ
_
n
log
A
k
45
2fveq3
⊢
n
=
k
→
log
A
n
=
log
A
k
46
42
44
45
2
fvmptf
⊢
k
∈
ℕ
∧
log
A
k
∈
ℝ
→
B
k
=
log
A
k
47
38
41
46
syl2anc
⊢
k
∈
1
…
N
→
B
k
=
log
A
k
48
47
adantl
⊢
N
∈
ℕ
∧
k
∈
1
…
N
→
B
k
=
log
A
k
49
40
rpcnd
⊢
k
∈
1
…
N
→
A
k
∈
ℂ
50
49
adantl
⊢
N
∈
ℕ
∧
k
∈
1
…
N
→
A
k
∈
ℂ
51
39
rpne0d
⊢
k
∈
ℕ
→
A
k
≠
0
52
38
51
syl
⊢
k
∈
1
…
N
→
A
k
≠
0
53
52
adantl
⊢
N
∈
ℕ
∧
k
∈
1
…
N
→
A
k
≠
0
54
50
53
logcld
⊢
N
∈
ℕ
∧
k
∈
1
…
N
→
log
A
k
∈
ℂ
55
48
54
eqeltrd
⊢
N
∈
ℕ
∧
k
∈
1
…
N
→
B
k
∈
ℂ
56
32
33
34
35
37
55
telfsumo
⊢
N
∈
ℕ
→
∑
j
∈
1
..^
N
B
j
−
B
j
+
1
=
B
1
−
B
N
57
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
58
fzoval
⊢
N
∈
ℤ
→
1
..^
N
=
1
…
N
−
1
59
57
58
syl
⊢
N
∈
ℕ
→
1
..^
N
=
1
…
N
−
1
60
59
sumeq1d
⊢
N
∈
ℕ
→
∑
j
∈
1
..^
N
B
j
−
B
j
+
1
=
∑
j
=
1
N
−
1
B
j
−
B
j
+
1
61
56
60
eqtr3d
⊢
N
∈
ℕ
→
B
1
−
B
N
=
∑
j
=
1
N
−
1
B
j
−
B
j
+
1
62
fzfid
⊢
N
∈
ℕ
→
1
…
N
−
1
∈
Fin
63
elfznn
⊢
j
∈
1
…
N
−
1
→
j
∈
ℕ
64
63
adantl
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
j
∈
ℕ
65
1
stirlinglem2
⊢
j
∈
ℕ
→
A
j
∈
ℝ
+
66
65
relogcld
⊢
j
∈
ℕ
→
log
A
j
∈
ℝ
67
nfcv
⊢
Ⅎ
_
n
j
68
11
67
nffv
⊢
Ⅎ
_
n
A
j
69
9
68
nffv
⊢
Ⅎ
_
n
log
A
j
70
2fveq3
⊢
n
=
j
→
log
A
n
=
log
A
j
71
67
69
70
2
fvmptf
⊢
j
∈
ℕ
∧
log
A
j
∈
ℝ
→
B
j
=
log
A
j
72
66
71
mpdan
⊢
j
∈
ℕ
→
B
j
=
log
A
j
73
72
66
eqeltrd
⊢
j
∈
ℕ
→
B
j
∈
ℝ
74
64
73
syl
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
B
j
∈
ℝ
75
peano2nn
⊢
j
∈
ℕ
→
j
+
1
∈
ℕ
76
1
stirlinglem2
⊢
j
+
1
∈
ℕ
→
A
j
+
1
∈
ℝ
+
77
75
76
syl
⊢
j
∈
ℕ
→
A
j
+
1
∈
ℝ
+
78
77
relogcld
⊢
j
∈
ℕ
→
log
A
j
+
1
∈
ℝ
79
nfcv
⊢
Ⅎ
_
n
j
+
1
80
11
79
nffv
⊢
Ⅎ
_
n
A
j
+
1
81
9
80
nffv
⊢
Ⅎ
_
n
log
A
j
+
1
82
2fveq3
⊢
n
=
j
+
1
→
log
A
n
=
log
A
j
+
1
83
79
81
82
2
fvmptf
⊢
j
+
1
∈
ℕ
∧
log
A
j
+
1
∈
ℝ
→
B
j
+
1
=
log
A
j
+
1
84
75
78
83
syl2anc
⊢
j
∈
ℕ
→
B
j
+
1
=
log
A
j
+
1
85
84
78
eqeltrd
⊢
j
∈
ℕ
→
B
j
+
1
∈
ℝ
86
63
85
syl
⊢
j
∈
1
…
N
−
1
→
B
j
+
1
∈
ℝ
87
86
adantl
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
B
j
+
1
∈
ℝ
88
74
87
resubcld
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
B
j
−
B
j
+
1
∈
ℝ
89
62
88
fsumrecl
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
B
j
−
B
j
+
1
∈
ℝ
90
30
a1i
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
1
4
∈
ℝ
91
63
nnred
⊢
j
∈
1
…
N
−
1
→
j
∈
ℝ
92
1red
⊢
j
∈
1
…
N
−
1
→
1
∈
ℝ
93
91
92
readdcld
⊢
j
∈
1
…
N
−
1
→
j
+
1
∈
ℝ
94
91
93
remulcld
⊢
j
∈
1
…
N
−
1
→
j
j
+
1
∈
ℝ
95
91
recnd
⊢
j
∈
1
…
N
−
1
→
j
∈
ℂ
96
1cnd
⊢
j
∈
1
…
N
−
1
→
1
∈
ℂ
97
95
96
addcld
⊢
j
∈
1
…
N
−
1
→
j
+
1
∈
ℂ
98
63
nnne0d
⊢
j
∈
1
…
N
−
1
→
j
≠
0
99
75
nnne0d
⊢
j
∈
ℕ
→
j
+
1
≠
0
100
63
99
syl
⊢
j
∈
1
…
N
−
1
→
j
+
1
≠
0
101
95
97
98
100
mulne0d
⊢
j
∈
1
…
N
−
1
→
j
j
+
1
≠
0
102
94
101
rereccld
⊢
j
∈
1
…
N
−
1
→
1
j
j
+
1
∈
ℝ
103
102
adantl
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
1
j
j
+
1
∈
ℝ
104
90
103
remulcld
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
1
4
1
j
j
+
1
∈
ℝ
105
62
104
fsumrecl
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
4
1
j
j
+
1
∈
ℝ
106
eqid
⊢
i
∈
ℕ
⟼
1
2
i
+
1
1
2
j
+
1
2
i
=
i
∈
ℕ
⟼
1
2
i
+
1
1
2
j
+
1
2
i
107
eqid
⊢
i
∈
ℕ
⟼
1
2
j
+
1
2
i
=
i
∈
ℕ
⟼
1
2
j
+
1
2
i
108
1
2
106
107
stirlinglem10
⊢
j
∈
ℕ
→
B
j
−
B
j
+
1
≤
1
4
1
j
j
+
1
109
64
108
syl
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
B
j
−
B
j
+
1
≤
1
4
1
j
j
+
1
110
62
88
104
109
fsumle
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
B
j
−
B
j
+
1
≤
∑
j
=
1
N
−
1
1
4
1
j
j
+
1
111
62
103
fsumrecl
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
∈
ℝ
112
1red
⊢
N
∈
ℕ
→
1
∈
ℝ
113
4pos
⊢
0
<
4
114
28
113
elrpii
⊢
4
∈
ℝ
+
115
114
a1i
⊢
N
∈
ℕ
→
4
∈
ℝ
+
116
0red
⊢
N
∈
ℕ
→
0
∈
ℝ
117
0lt1
⊢
0
<
1
118
117
a1i
⊢
N
∈
ℕ
→
0
<
1
119
116
112
118
ltled
⊢
N
∈
ℕ
→
0
≤
1
120
112
115
119
divge0d
⊢
N
∈
ℕ
→
0
≤
1
4
121
eqid
⊢
ℤ
≥
N
=
ℤ
≥
N
122
eluznn
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
∈
ℕ
123
3
a1i
⊢
j
∈
ℕ
→
F
=
n
∈
ℕ
⟼
1
n
n
+
1
124
simpr
⊢
j
∈
ℕ
∧
n
=
j
→
n
=
j
125
124
oveq1d
⊢
j
∈
ℕ
∧
n
=
j
→
n
+
1
=
j
+
1
126
124
125
oveq12d
⊢
j
∈
ℕ
∧
n
=
j
→
n
n
+
1
=
j
j
+
1
127
126
oveq2d
⊢
j
∈
ℕ
∧
n
=
j
→
1
n
n
+
1
=
1
j
j
+
1
128
id
⊢
j
∈
ℕ
→
j
∈
ℕ
129
nnre
⊢
j
∈
ℕ
→
j
∈
ℝ
130
1red
⊢
j
∈
ℕ
→
1
∈
ℝ
131
129
130
readdcld
⊢
j
∈
ℕ
→
j
+
1
∈
ℝ
132
129
131
remulcld
⊢
j
∈
ℕ
→
j
j
+
1
∈
ℝ
133
nncn
⊢
j
∈
ℕ
→
j
∈
ℂ
134
1cnd
⊢
j
∈
ℕ
→
1
∈
ℂ
135
133
134
addcld
⊢
j
∈
ℕ
→
j
+
1
∈
ℂ
136
nnne0
⊢
j
∈
ℕ
→
j
≠
0
137
133
135
136
99
mulne0d
⊢
j
∈
ℕ
→
j
j
+
1
≠
0
138
132
137
rereccld
⊢
j
∈
ℕ
→
1
j
j
+
1
∈
ℝ
139
123
127
128
138
fvmptd
⊢
j
∈
ℕ
→
F
j
=
1
j
j
+
1
140
122
139
syl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
F
j
=
1
j
j
+
1
141
122
nnred
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
∈
ℝ
142
1red
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
1
∈
ℝ
143
141
142
readdcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
+
1
∈
ℝ
144
141
143
remulcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
j
+
1
∈
ℝ
145
141
recnd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
∈
ℂ
146
1cnd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
1
∈
ℂ
147
145
146
addcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
+
1
∈
ℂ
148
122
nnne0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
≠
0
149
122
99
syl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
+
1
≠
0
150
145
147
148
149
mulne0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
j
+
1
≠
0
151
144
150
rereccld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
1
j
j
+
1
∈
ℝ
152
seqeq1
⊢
N
=
1
→
seq
N
+
F
=
seq
1
+
F
153
3
trireciplem
⊢
seq
1
+
F
⇝
1
154
climrel
⊢
Rel
⇝
155
154
releldmi
⊢
seq
1
+
F
⇝
1
→
seq
1
+
F
∈
dom
⇝
156
153
155
mp1i
⊢
N
=
1
→
seq
1
+
F
∈
dom
⇝
157
152
156
eqeltrd
⊢
N
=
1
→
seq
N
+
F
∈
dom
⇝
158
157
adantl
⊢
N
∈
ℕ
∧
N
=
1
→
seq
N
+
F
∈
dom
⇝
159
simpl
⊢
N
∈
ℕ
∧
¬
N
=
1
→
N
∈
ℕ
160
simpr
⊢
N
∈
ℕ
∧
¬
N
=
1
→
¬
N
=
1
161
elnn1uz2
⊢
N
∈
ℕ
↔
N
=
1
∨
N
∈
ℤ
≥
2
162
159
161
sylib
⊢
N
∈
ℕ
∧
¬
N
=
1
→
N
=
1
∨
N
∈
ℤ
≥
2
163
162
ord
⊢
N
∈
ℕ
∧
¬
N
=
1
→
¬
N
=
1
→
N
∈
ℤ
≥
2
164
160
163
mpd
⊢
N
∈
ℕ
∧
¬
N
=
1
→
N
∈
ℤ
≥
2
165
uz2m1nn
⊢
N
∈
ℤ
≥
2
→
N
−
1
∈
ℕ
166
164
165
syl
⊢
N
∈
ℕ
∧
¬
N
=
1
→
N
−
1
∈
ℕ
167
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
168
167
adantr
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
N
∈
ℂ
169
1cnd
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
1
∈
ℂ
170
168
169
npcand
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
N
-
1
+
1
=
N
171
170
eqcomd
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
N
=
N
-
1
+
1
172
171
seqeq1d
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
seq
N
+
F
=
seq
N
-
1
+
1
+
F
173
nnuz
⊢
ℕ
=
ℤ
≥
1
174
id
⊢
N
−
1
∈
ℕ
→
N
−
1
∈
ℕ
175
138
recnd
⊢
j
∈
ℕ
→
1
j
j
+
1
∈
ℂ
176
139
175
eqeltrd
⊢
j
∈
ℕ
→
F
j
∈
ℂ
177
176
adantl
⊢
N
−
1
∈
ℕ
∧
j
∈
ℕ
→
F
j
∈
ℂ
178
153
a1i
⊢
N
−
1
∈
ℕ
→
seq
1
+
F
⇝
1
179
173
174
177
178
clim2ser
⊢
N
−
1
∈
ℕ
→
seq
N
-
1
+
1
+
F
⇝
1
−
seq
1
+
F
N
−
1
180
179
adantl
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
seq
N
-
1
+
1
+
F
⇝
1
−
seq
1
+
F
N
−
1
181
172
180
eqbrtrd
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
seq
N
+
F
⇝
1
−
seq
1
+
F
N
−
1
182
154
releldmi
⊢
seq
N
+
F
⇝
1
−
seq
1
+
F
N
−
1
→
seq
N
+
F
∈
dom
⇝
183
181
182
syl
⊢
N
∈
ℕ
∧
N
−
1
∈
ℕ
→
seq
N
+
F
∈
dom
⇝
184
159
166
183
syl2anc
⊢
N
∈
ℕ
∧
¬
N
=
1
→
seq
N
+
F
∈
dom
⇝
185
158
184
pm2.61dan
⊢
N
∈
ℕ
→
seq
N
+
F
∈
dom
⇝
186
121
57
140
151
185
isumrecl
⊢
N
∈
ℕ
→
∑
j
∈
ℤ
≥
N
1
j
j
+
1
∈
ℝ
187
122
nnrpd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
∈
ℝ
+
188
187
rpge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
0
≤
j
189
141
188
ge0p1rpd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
+
1
∈
ℝ
+
190
187
189
rpmulcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
j
j
+
1
∈
ℝ
+
191
119
adantr
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
0
≤
1
192
142
190
191
divge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
N
→
0
≤
1
j
j
+
1
193
121
57
140
151
185
192
isumge0
⊢
N
∈
ℕ
→
0
≤
∑
j
∈
ℤ
≥
N
1
j
j
+
1
194
116
186
111
193
leadd2dd
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
+
0
≤
∑
j
=
1
N
−
1
1
j
j
+
1
+
∑
j
∈
ℤ
≥
N
1
j
j
+
1
195
111
recnd
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
∈
ℂ
196
195
addridd
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
+
0
=
∑
j
=
1
N
−
1
1
j
j
+
1
197
196
eqcomd
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
=
∑
j
=
1
N
−
1
1
j
j
+
1
+
0
198
id
⊢
N
∈
ℕ
→
N
∈
ℕ
199
139
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
F
j
=
1
j
j
+
1
200
133
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
∈
ℂ
201
1cnd
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
∈
ℂ
202
200
201
addcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
+
1
∈
ℂ
203
200
202
mulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
j
+
1
∈
ℂ
204
136
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
≠
0
205
99
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
+
1
≠
0
206
200
202
204
205
mulne0d
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
j
+
1
≠
0
207
203
206
reccld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
j
j
+
1
∈
ℂ
208
153
155
mp1i
⊢
N
∈
ℕ
→
seq
1
+
F
∈
dom
⇝
209
173
121
198
199
207
208
isumsplit
⊢
N
∈
ℕ
→
∑
j
∈
ℕ
1
j
j
+
1
=
∑
j
=
1
N
−
1
1
j
j
+
1
+
∑
j
∈
ℤ
≥
N
1
j
j
+
1
210
194
197
209
3brtr4d
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
≤
∑
j
∈
ℕ
1
j
j
+
1
211
1zzd
⊢
⊤
→
1
∈
ℤ
212
139
adantl
⊢
⊤
∧
j
∈
ℕ
→
F
j
=
1
j
j
+
1
213
175
adantl
⊢
⊤
∧
j
∈
ℕ
→
1
j
j
+
1
∈
ℂ
214
153
a1i
⊢
⊤
→
seq
1
+
F
⇝
1
215
173
211
212
213
214
isumclim
⊢
⊤
→
∑
j
∈
ℕ
1
j
j
+
1
=
1
216
215
mptru
⊢
∑
j
∈
ℕ
1
j
j
+
1
=
1
217
210
216
breqtrdi
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
j
j
+
1
≤
1
218
111
112
31
120
217
lemul2ad
⊢
N
∈
ℕ
→
1
4
∑
j
=
1
N
−
1
1
j
j
+
1
≤
1
4
⋅
1
219
4cn
⊢
4
∈
ℂ
220
219
a1i
⊢
N
∈
ℕ
→
4
∈
ℂ
221
113
a1i
⊢
N
∈
ℕ
→
0
<
4
222
221
gt0ne0d
⊢
N
∈
ℕ
→
4
≠
0
223
220
222
reccld
⊢
N
∈
ℕ
→
1
4
∈
ℂ
224
103
recnd
⊢
N
∈
ℕ
∧
j
∈
1
…
N
−
1
→
1
j
j
+
1
∈
ℂ
225
62
223
224
fsummulc2
⊢
N
∈
ℕ
→
1
4
∑
j
=
1
N
−
1
1
j
j
+
1
=
∑
j
=
1
N
−
1
1
4
1
j
j
+
1
226
223
mulridd
⊢
N
∈
ℕ
→
1
4
⋅
1
=
1
4
227
218
225
226
3brtr3d
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
1
4
1
j
j
+
1
≤
1
4
228
89
105
31
110
227
letrd
⊢
N
∈
ℕ
→
∑
j
=
1
N
−
1
B
j
−
B
j
+
1
≤
1
4
229
61
228
eqbrtrd
⊢
N
∈
ℕ
→
B
1
−
B
N
≤
1
4
230
18
27
31
229
subled
⊢
N
∈
ℕ
→
B
1
−
1
4
≤
B
N