| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stirlinglem4.1 |  |-  A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 2 |  | stirlinglem4.2 |  |-  B = ( n e. NN |-> ( log ` ( A ` n ) ) ) | 
						
							| 3 |  | stirlinglem4.3 |  |-  J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) | 
						
							| 4 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 5 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 6 | 5 | nn0ge0d |  |-  ( N e. NN -> 0 <_ N ) | 
						
							| 7 | 4 6 | ge0p1rpd |  |-  ( N e. NN -> ( N + 1 ) e. RR+ ) | 
						
							| 8 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 9 | 7 8 | rpdivcld |  |-  ( N e. NN -> ( ( N + 1 ) / N ) e. RR+ ) | 
						
							| 10 | 9 | rpsqrtcld |  |-  ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) e. RR+ ) | 
						
							| 11 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 12 | 9 11 | rpexpcld |  |-  ( N e. NN -> ( ( ( N + 1 ) / N ) ^ N ) e. RR+ ) | 
						
							| 13 | 10 12 | rpmulcld |  |-  ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) e. RR+ ) | 
						
							| 14 |  | epr |  |-  _e e. RR+ | 
						
							| 15 | 14 | a1i |  |-  ( N e. NN -> _e e. RR+ ) | 
						
							| 16 | 13 15 | relogdivd |  |-  ( N e. NN -> ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) = ( ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) - ( log ` _e ) ) ) | 
						
							| 17 | 10 12 | relogmuld |  |-  ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) + ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) ) ) | 
						
							| 18 |  | logsqrt |  |-  ( ( ( N + 1 ) / N ) e. RR+ -> ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) ) | 
						
							| 19 | 9 18 | syl |  |-  ( N e. NN -> ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) ) | 
						
							| 20 |  | relogexp |  |-  ( ( ( ( N + 1 ) / N ) e. RR+ /\ N e. ZZ ) -> ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) = ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 21 | 9 11 20 | syl2anc |  |-  ( N e. NN -> ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) = ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 22 | 19 21 | oveq12d |  |-  ( N e. NN -> ( ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) + ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) | 
						
							| 23 | 17 22 | eqtrd |  |-  ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) | 
						
							| 24 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 25 | 24 | nncnd |  |-  ( N e. NN -> ( N + 1 ) e. CC ) | 
						
							| 26 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 27 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 28 | 25 26 27 | divcld |  |-  ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) | 
						
							| 29 | 24 | nnne0d |  |-  ( N e. NN -> ( N + 1 ) =/= 0 ) | 
						
							| 30 | 25 26 29 27 | divne0d |  |-  ( N e. NN -> ( ( N + 1 ) / N ) =/= 0 ) | 
						
							| 31 | 28 30 | logcld |  |-  ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) | 
						
							| 32 |  | 2cnd |  |-  ( N e. NN -> 2 e. CC ) | 
						
							| 33 |  | 2rp |  |-  2 e. RR+ | 
						
							| 34 | 33 | a1i |  |-  ( N e. NN -> 2 e. RR+ ) | 
						
							| 35 | 34 | rpne0d |  |-  ( N e. NN -> 2 =/= 0 ) | 
						
							| 36 | 31 32 35 | divrec2d |  |-  ( N e. NN -> ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) = ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( N e. NN -> ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) | 
						
							| 38 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 39 | 38 | halfcld |  |-  ( N e. NN -> ( 1 / 2 ) e. CC ) | 
						
							| 40 | 39 26 31 | adddird |  |-  ( N e. NN -> ( ( ( 1 / 2 ) + N ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) | 
						
							| 41 | 26 32 35 | divcan4d |  |-  ( N e. NN -> ( ( N x. 2 ) / 2 ) = N ) | 
						
							| 42 | 26 32 | mulcomd |  |-  ( N e. NN -> ( N x. 2 ) = ( 2 x. N ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( N e. NN -> ( ( N x. 2 ) / 2 ) = ( ( 2 x. N ) / 2 ) ) | 
						
							| 44 | 41 43 | eqtr3d |  |-  ( N e. NN -> N = ( ( 2 x. N ) / 2 ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( N e. NN -> ( ( 1 / 2 ) + N ) = ( ( 1 / 2 ) + ( ( 2 x. N ) / 2 ) ) ) | 
						
							| 46 | 32 26 | mulcld |  |-  ( N e. NN -> ( 2 x. N ) e. CC ) | 
						
							| 47 | 38 46 32 35 | divdird |  |-  ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) = ( ( 1 / 2 ) + ( ( 2 x. N ) / 2 ) ) ) | 
						
							| 48 | 45 47 | eqtr4d |  |-  ( N e. NN -> ( ( 1 / 2 ) + N ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( N e. NN -> ( ( ( 1 / 2 ) + N ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 50 | 40 49 | eqtr3d |  |-  ( N e. NN -> ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 51 | 23 37 50 | 3eqtrd |  |-  ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 52 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 53 | 52 | a1i |  |-  ( N e. NN -> ( log ` _e ) = 1 ) | 
						
							| 54 | 51 53 | oveq12d |  |-  ( N e. NN -> ( ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) - ( log ` _e ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) | 
						
							| 55 | 16 54 | eqtrd |  |-  ( N e. NN -> ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) | 
						
							| 56 | 1 | stirlinglem2 |  |-  ( N e. NN -> ( A ` N ) e. RR+ ) | 
						
							| 57 | 56 | relogcld |  |-  ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) | 
						
							| 58 |  | nfcv |  |-  F/_ n N | 
						
							| 59 |  | nfcv |  |-  F/_ n log | 
						
							| 60 |  | nfmpt1 |  |-  F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) | 
						
							| 61 | 1 60 | nfcxfr |  |-  F/_ n A | 
						
							| 62 | 61 58 | nffv |  |-  F/_ n ( A ` N ) | 
						
							| 63 | 59 62 | nffv |  |-  F/_ n ( log ` ( A ` N ) ) | 
						
							| 64 |  | 2fveq3 |  |-  ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) | 
						
							| 65 | 58 63 64 2 | fvmptf |  |-  ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) | 
						
							| 66 | 57 65 | mpdan |  |-  ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) | 
						
							| 67 |  | nfcv |  |-  F/_ k ( log ` ( A ` n ) ) | 
						
							| 68 |  | nfcv |  |-  F/_ n k | 
						
							| 69 | 61 68 | nffv |  |-  F/_ n ( A ` k ) | 
						
							| 70 | 59 69 | nffv |  |-  F/_ n ( log ` ( A ` k ) ) | 
						
							| 71 |  | 2fveq3 |  |-  ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) | 
						
							| 72 | 67 70 71 | cbvmpt |  |-  ( n e. NN |-> ( log ` ( A ` n ) ) ) = ( k e. NN |-> ( log ` ( A ` k ) ) ) | 
						
							| 73 | 2 72 | eqtri |  |-  B = ( k e. NN |-> ( log ` ( A ` k ) ) ) | 
						
							| 74 | 73 | a1i |  |-  ( N e. NN -> B = ( k e. NN |-> ( log ` ( A ` k ) ) ) ) | 
						
							| 75 |  | simpr |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> k = ( N + 1 ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( A ` k ) = ( A ` ( N + 1 ) ) ) | 
						
							| 77 | 76 | fveq2d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( log ` ( A ` k ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) | 
						
							| 78 | 1 | stirlinglem2 |  |-  ( ( N + 1 ) e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) | 
						
							| 79 | 24 78 | syl |  |-  ( N e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) | 
						
							| 80 | 79 | relogcld |  |-  ( N e. NN -> ( log ` ( A ` ( N + 1 ) ) ) e. RR ) | 
						
							| 81 | 74 77 24 80 | fvmptd |  |-  ( N e. NN -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) | 
						
							| 82 | 66 81 | oveq12d |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( ( log ` ( A ` N ) ) - ( log ` ( A ` ( N + 1 ) ) ) ) ) | 
						
							| 83 | 56 79 | relogdivd |  |-  ( N e. NN -> ( log ` ( ( A ` N ) / ( A ` ( N + 1 ) ) ) ) = ( ( log ` ( A ` N ) ) - ( log ` ( A ` ( N + 1 ) ) ) ) ) | 
						
							| 84 |  | faccl |  |-  ( N e. NN0 -> ( ! ` N ) e. NN ) | 
						
							| 85 |  | nnrp |  |-  ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) | 
						
							| 86 | 5 84 85 | 3syl |  |-  ( N e. NN -> ( ! ` N ) e. RR+ ) | 
						
							| 87 | 34 8 | rpmulcld |  |-  ( N e. NN -> ( 2 x. N ) e. RR+ ) | 
						
							| 88 | 87 | rpsqrtcld |  |-  ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. RR+ ) | 
						
							| 89 | 8 15 | rpdivcld |  |-  ( N e. NN -> ( N / _e ) e. RR+ ) | 
						
							| 90 | 89 11 | rpexpcld |  |-  ( N e. NN -> ( ( N / _e ) ^ N ) e. RR+ ) | 
						
							| 91 | 88 90 | rpmulcld |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. RR+ ) | 
						
							| 92 | 86 91 | rpdivcld |  |-  ( N e. NN -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) | 
						
							| 93 | 1 | a1i |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) | 
						
							| 94 |  | simpr |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> n = N ) | 
						
							| 95 | 94 | fveq2d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ! ` n ) = ( ! ` N ) ) | 
						
							| 96 | 94 | oveq2d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( 2 x. n ) = ( 2 x. N ) ) | 
						
							| 97 | 96 | fveq2d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. N ) ) ) | 
						
							| 98 | 94 | oveq1d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( n / _e ) = ( N / _e ) ) | 
						
							| 99 | 98 94 | oveq12d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( n / _e ) ^ n ) = ( ( N / _e ) ^ N ) ) | 
						
							| 100 | 97 99 | oveq12d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) | 
						
							| 101 | 95 100 | oveq12d |  |-  ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 102 |  | simpl |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN ) | 
						
							| 103 | 86 | rpcnd |  |-  ( N e. NN -> ( ! ` N ) e. CC ) | 
						
							| 104 | 103 | adantr |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ! ` N ) e. CC ) | 
						
							| 105 |  | 2cnd |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> 2 e. CC ) | 
						
							| 106 | 102 | nncnd |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. CC ) | 
						
							| 107 | 105 106 | mulcld |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( 2 x. N ) e. CC ) | 
						
							| 108 | 107 | sqrtcld |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( sqrt ` ( 2 x. N ) ) e. CC ) | 
						
							| 109 |  | ere |  |-  _e e. RR | 
						
							| 110 | 109 | recni |  |-  _e e. CC | 
						
							| 111 | 110 | a1i |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> _e e. CC ) | 
						
							| 112 |  | 0re |  |-  0 e. RR | 
						
							| 113 |  | epos |  |-  0 < _e | 
						
							| 114 | 112 113 | gtneii |  |-  _e =/= 0 | 
						
							| 115 | 114 | a1i |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> _e =/= 0 ) | 
						
							| 116 | 106 111 115 | divcld |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( N / _e ) e. CC ) | 
						
							| 117 | 102 | nnnn0d |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN0 ) | 
						
							| 118 | 116 117 | expcld |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( N / _e ) ^ N ) e. CC ) | 
						
							| 119 | 108 118 | mulcld |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. CC ) | 
						
							| 120 | 88 | rpne0d |  |-  ( N e. NN -> ( sqrt ` ( 2 x. N ) ) =/= 0 ) | 
						
							| 121 | 120 | adantr |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( sqrt ` ( 2 x. N ) ) =/= 0 ) | 
						
							| 122 | 102 | nnne0d |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N =/= 0 ) | 
						
							| 123 | 106 111 122 115 | divne0d |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( N / _e ) =/= 0 ) | 
						
							| 124 | 102 | nnzd |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. ZZ ) | 
						
							| 125 | 116 123 124 | expne0d |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( N / _e ) ^ N ) =/= 0 ) | 
						
							| 126 | 108 118 121 125 | mulne0d |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) =/= 0 ) | 
						
							| 127 | 104 119 126 | divcld |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. CC ) | 
						
							| 128 | 93 101 102 127 | fvmptd |  |-  ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 129 | 92 128 | mpdan |  |-  ( N e. NN -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 130 |  | nfcv |  |-  F/_ k ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) | 
						
							| 131 |  | nfcv |  |-  F/_ n ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) | 
						
							| 132 |  | fveq2 |  |-  ( n = k -> ( ! ` n ) = ( ! ` k ) ) | 
						
							| 133 |  | oveq2 |  |-  ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 134 | 133 | fveq2d |  |-  ( n = k -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) | 
						
							| 135 |  | oveq1 |  |-  ( n = k -> ( n / _e ) = ( k / _e ) ) | 
						
							| 136 |  | id |  |-  ( n = k -> n = k ) | 
						
							| 137 | 135 136 | oveq12d |  |-  ( n = k -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) | 
						
							| 138 | 134 137 | oveq12d |  |-  ( n = k -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) | 
						
							| 139 | 132 138 | oveq12d |  |-  ( n = k -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 140 | 130 131 139 | cbvmpt |  |-  ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 141 | 1 140 | eqtri |  |-  A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) | 
						
							| 142 | 141 | a1i |  |-  ( N e. NN -> A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) ) | 
						
							| 143 | 75 | fveq2d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ! ` k ) = ( ! ` ( N + 1 ) ) ) | 
						
							| 144 | 75 | oveq2d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( 2 x. k ) = ( 2 x. ( N + 1 ) ) ) | 
						
							| 145 | 144 | fveq2d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( sqrt ` ( 2 x. k ) ) = ( sqrt ` ( 2 x. ( N + 1 ) ) ) ) | 
						
							| 146 | 75 | oveq1d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( k / _e ) = ( ( N + 1 ) / _e ) ) | 
						
							| 147 | 146 75 | oveq12d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( k / _e ) ^ k ) = ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) | 
						
							| 148 | 145 147 | oveq12d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) = ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) | 
						
							| 149 | 143 148 | oveq12d |  |-  ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) = ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) | 
						
							| 150 | 24 | nnnn0d |  |-  ( N e. NN -> ( N + 1 ) e. NN0 ) | 
						
							| 151 |  | faccl |  |-  ( ( N + 1 ) e. NN0 -> ( ! ` ( N + 1 ) ) e. NN ) | 
						
							| 152 |  | nnrp |  |-  ( ( ! ` ( N + 1 ) ) e. NN -> ( ! ` ( N + 1 ) ) e. RR+ ) | 
						
							| 153 | 150 151 152 | 3syl |  |-  ( N e. NN -> ( ! ` ( N + 1 ) ) e. RR+ ) | 
						
							| 154 | 34 7 | rpmulcld |  |-  ( N e. NN -> ( 2 x. ( N + 1 ) ) e. RR+ ) | 
						
							| 155 | 154 | rpsqrtcld |  |-  ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) e. RR+ ) | 
						
							| 156 | 7 15 | rpdivcld |  |-  ( N e. NN -> ( ( N + 1 ) / _e ) e. RR+ ) | 
						
							| 157 | 11 | peano2zd |  |-  ( N e. NN -> ( N + 1 ) e. ZZ ) | 
						
							| 158 | 156 157 | rpexpcld |  |-  ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) e. RR+ ) | 
						
							| 159 | 155 158 | rpmulcld |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. RR+ ) | 
						
							| 160 | 153 159 | rpdivcld |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) e. RR+ ) | 
						
							| 161 | 142 149 24 160 | fvmptd |  |-  ( N e. NN -> ( A ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) | 
						
							| 162 | 129 161 | oveq12d |  |-  ( N e. NN -> ( ( A ` N ) / ( A ` ( N + 1 ) ) ) = ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) | 
						
							| 163 |  | facp1 |  |-  ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) | 
						
							| 164 | 5 163 | syl |  |-  ( N e. NN -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) | 
						
							| 165 | 164 | oveq1d |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) | 
						
							| 166 | 159 | rpcnd |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. CC ) | 
						
							| 167 | 159 | rpne0d |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) =/= 0 ) | 
						
							| 168 | 103 25 166 167 | divassd |  |-  ( N e. NN -> ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) | 
						
							| 169 | 165 168 | eqtrd |  |-  ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) | 
						
							| 170 | 169 | oveq2d |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) ) | 
						
							| 171 | 91 | rpcnd |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. CC ) | 
						
							| 172 | 25 166 167 | divcld |  |-  ( N e. NN -> ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) e. CC ) | 
						
							| 173 | 103 172 | mulcld |  |-  ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) e. CC ) | 
						
							| 174 | 91 | rpne0d |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) =/= 0 ) | 
						
							| 175 | 86 | rpne0d |  |-  ( N e. NN -> ( ! ` N ) =/= 0 ) | 
						
							| 176 | 25 166 29 167 | divne0d |  |-  ( N e. NN -> ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) =/= 0 ) | 
						
							| 177 | 103 172 175 176 | mulne0d |  |-  ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) =/= 0 ) | 
						
							| 178 | 103 171 173 174 177 | divdiv32d |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) = ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 179 | 103 103 172 175 176 | divdiv1d |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) ) | 
						
							| 180 | 179 | eqcomd |  |-  ( N e. NN -> ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) = ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) | 
						
							| 181 | 180 | oveq1d |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 182 | 103 175 | dividd |  |-  ( N e. NN -> ( ( ! ` N ) / ( ! ` N ) ) = 1 ) | 
						
							| 183 | 182 | oveq1d |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) | 
						
							| 184 | 183 | oveq1d |  |-  ( N e. NN -> ( ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 185 | 25 166 29 167 | recdivd |  |-  ( N e. NN -> ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) | 
						
							| 186 | 185 | oveq1d |  |-  ( N e. NN -> ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 187 | 166 25 29 | divcld |  |-  ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) e. CC ) | 
						
							| 188 | 88 | rpcnd |  |-  ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. CC ) | 
						
							| 189 | 90 | rpcnd |  |-  ( N e. NN -> ( ( N / _e ) ^ N ) e. CC ) | 
						
							| 190 | 90 | rpne0d |  |-  ( N e. NN -> ( ( N / _e ) ^ N ) =/= 0 ) | 
						
							| 191 | 187 188 189 120 190 | divdiv1d |  |-  ( N e. NN -> ( ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 192 | 166 25 188 29 120 | divdiv32d |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( N + 1 ) ) ) | 
						
							| 193 | 155 | rpcnd |  |-  ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) e. CC ) | 
						
							| 194 | 158 | rpcnd |  |-  ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) e. CC ) | 
						
							| 195 | 193 194 188 120 | div23d |  |-  ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) | 
						
							| 196 | 34 | rpred |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 197 | 34 | rpge0d |  |-  ( N e. NN -> 0 <_ 2 ) | 
						
							| 198 | 24 | nnred |  |-  ( N e. NN -> ( N + 1 ) e. RR ) | 
						
							| 199 | 150 | nn0ge0d |  |-  ( N e. NN -> 0 <_ ( N + 1 ) ) | 
						
							| 200 | 196 197 198 199 | sqrtmuld |  |-  ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) ) | 
						
							| 201 | 196 197 4 6 | sqrtmuld |  |-  ( N e. NN -> ( sqrt ` ( 2 x. N ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) | 
						
							| 202 | 200 201 | oveq12d |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) / ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) ) | 
						
							| 203 | 32 | sqrtcld |  |-  ( N e. NN -> ( sqrt ` 2 ) e. CC ) | 
						
							| 204 | 25 | sqrtcld |  |-  ( N e. NN -> ( sqrt ` ( N + 1 ) ) e. CC ) | 
						
							| 205 | 26 | sqrtcld |  |-  ( N e. NN -> ( sqrt ` N ) e. CC ) | 
						
							| 206 | 34 | rpsqrtcld |  |-  ( N e. NN -> ( sqrt ` 2 ) e. RR+ ) | 
						
							| 207 | 206 | rpne0d |  |-  ( N e. NN -> ( sqrt ` 2 ) =/= 0 ) | 
						
							| 208 | 8 | rpsqrtcld |  |-  ( N e. NN -> ( sqrt ` N ) e. RR+ ) | 
						
							| 209 | 208 | rpne0d |  |-  ( N e. NN -> ( sqrt ` N ) =/= 0 ) | 
						
							| 210 | 203 203 204 205 207 209 | divmuldivd |  |-  ( N e. NN -> ( ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) x. ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) / ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) ) | 
						
							| 211 | 203 207 | dividd |  |-  ( N e. NN -> ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) = 1 ) | 
						
							| 212 | 198 199 8 | sqrtdivd |  |-  ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) = ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) | 
						
							| 213 | 212 | eqcomd |  |-  ( N e. NN -> ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) = ( sqrt ` ( ( N + 1 ) / N ) ) ) | 
						
							| 214 | 211 213 | oveq12d |  |-  ( N e. NN -> ( ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) x. ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) = ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 215 | 202 210 214 | 3eqtr2d |  |-  ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 216 | 215 | oveq1d |  |-  ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) = ( ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) | 
						
							| 217 | 28 | sqrtcld |  |-  ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) e. CC ) | 
						
							| 218 | 217 | mullidd |  |-  ( N e. NN -> ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( sqrt ` ( ( N + 1 ) / N ) ) ) | 
						
							| 219 | 218 | oveq1d |  |-  ( N e. NN -> ( ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) | 
						
							| 220 | 195 216 219 | 3eqtrd |  |-  ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) | 
						
							| 221 | 220 | oveq1d |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) | 
						
							| 222 | 192 221 | eqtrd |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) | 
						
							| 223 | 222 | oveq1d |  |-  ( N e. NN -> ( ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) | 
						
							| 224 | 191 223 | eqtr3d |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) | 
						
							| 225 | 217 194 | mulcld |  |-  ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. CC ) | 
						
							| 226 | 225 25 189 29 190 | divdiv32d |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) / ( N + 1 ) ) ) | 
						
							| 227 | 217 194 189 190 | divassd |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) ) | 
						
							| 228 | 15 | rpcnd |  |-  ( N e. NN -> _e e. CC ) | 
						
							| 229 | 15 | rpne0d |  |-  ( N e. NN -> _e =/= 0 ) | 
						
							| 230 | 25 228 229 150 | expdivd |  |-  ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) = ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) ) | 
						
							| 231 | 26 228 229 5 | expdivd |  |-  ( N e. NN -> ( ( N / _e ) ^ N ) = ( ( N ^ N ) / ( _e ^ N ) ) ) | 
						
							| 232 | 230 231 | oveq12d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) | 
						
							| 233 | 232 | oveq2d |  |-  ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) ) | 
						
							| 234 | 25 150 | expcld |  |-  ( N e. NN -> ( ( N + 1 ) ^ ( N + 1 ) ) e. CC ) | 
						
							| 235 | 228 150 | expcld |  |-  ( N e. NN -> ( _e ^ ( N + 1 ) ) e. CC ) | 
						
							| 236 | 26 5 | expcld |  |-  ( N e. NN -> ( N ^ N ) e. CC ) | 
						
							| 237 | 228 5 | expcld |  |-  ( N e. NN -> ( _e ^ N ) e. CC ) | 
						
							| 238 | 228 229 157 | expne0d |  |-  ( N e. NN -> ( _e ^ ( N + 1 ) ) =/= 0 ) | 
						
							| 239 | 228 229 11 | expne0d |  |-  ( N e. NN -> ( _e ^ N ) =/= 0 ) | 
						
							| 240 | 26 27 11 | expne0d |  |-  ( N e. NN -> ( N ^ N ) =/= 0 ) | 
						
							| 241 | 234 235 236 237 238 239 240 | divdivdivd |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) | 
						
							| 242 | 234 237 | mulcomd |  |-  ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) = ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) ) | 
						
							| 243 | 242 | oveq1d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) = ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) | 
						
							| 244 | 237 235 234 236 238 240 | divmuldivd |  |-  ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) | 
						
							| 245 | 228 5 | expp1d |  |-  ( N e. NN -> ( _e ^ ( N + 1 ) ) = ( ( _e ^ N ) x. _e ) ) | 
						
							| 246 | 245 | oveq2d |  |-  ( N e. NN -> ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) = ( ( _e ^ N ) / ( ( _e ^ N ) x. _e ) ) ) | 
						
							| 247 | 237 237 228 239 229 | divdiv1d |  |-  ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ N ) ) / _e ) = ( ( _e ^ N ) / ( ( _e ^ N ) x. _e ) ) ) | 
						
							| 248 | 237 239 | dividd |  |-  ( N e. NN -> ( ( _e ^ N ) / ( _e ^ N ) ) = 1 ) | 
						
							| 249 | 248 | oveq1d |  |-  ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ N ) ) / _e ) = ( 1 / _e ) ) | 
						
							| 250 | 246 247 249 | 3eqtr2d |  |-  ( N e. NN -> ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) = ( 1 / _e ) ) | 
						
							| 251 | 250 | oveq1d |  |-  ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) | 
						
							| 252 | 244 251 | eqtr3d |  |-  ( N e. NN -> ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) | 
						
							| 253 | 241 243 252 | 3eqtrd |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) | 
						
							| 254 | 253 | oveq2d |  |-  ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) | 
						
							| 255 | 227 233 254 | 3eqtrd |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) | 
						
							| 256 | 255 | oveq1d |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) ) | 
						
							| 257 | 234 236 240 | divcld |  |-  ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) e. CC ) | 
						
							| 258 | 38 228 257 229 | div32d |  |-  ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( 1 x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) | 
						
							| 259 | 257 228 229 | divcld |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) e. CC ) | 
						
							| 260 | 259 | mullidd |  |-  ( N e. NN -> ( 1 x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) | 
						
							| 261 | 258 260 | eqtrd |  |-  ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) | 
						
							| 262 | 261 | oveq2d |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) | 
						
							| 263 | 228 229 | reccld |  |-  ( N e. NN -> ( 1 / _e ) e. CC ) | 
						
							| 264 | 263 257 | mulcld |  |-  ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) e. CC ) | 
						
							| 265 | 217 264 25 29 | div23d |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) | 
						
							| 266 | 217 25 29 | divcld |  |-  ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) e. CC ) | 
						
							| 267 | 266 257 228 229 | divassd |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) | 
						
							| 268 | 262 265 267 | 3eqtr4d |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) | 
						
							| 269 | 226 256 268 | 3eqtrd |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) | 
						
							| 270 | 186 224 269 | 3eqtrd |  |-  ( N e. NN -> ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) | 
						
							| 271 | 181 184 270 | 3eqtrd |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) | 
						
							| 272 | 170 178 271 | 3eqtrd |  |-  ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) | 
						
							| 273 | 217 25 257 29 | div32d |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) ) ) | 
						
							| 274 | 25 5 | expp1d |  |-  ( N e. NN -> ( ( N + 1 ) ^ ( N + 1 ) ) = ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) ) | 
						
							| 275 | 274 | oveq1d |  |-  ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) = ( ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) / ( N + 1 ) ) ) | 
						
							| 276 | 25 5 | expcld |  |-  ( N e. NN -> ( ( N + 1 ) ^ N ) e. CC ) | 
						
							| 277 | 276 25 29 | divcan4d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) / ( N + 1 ) ) = ( ( N + 1 ) ^ N ) ) | 
						
							| 278 | 275 277 | eqtrd |  |-  ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) = ( ( N + 1 ) ^ N ) ) | 
						
							| 279 | 278 | oveq1d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) / ( N ^ N ) ) = ( ( ( N + 1 ) ^ N ) / ( N ^ N ) ) ) | 
						
							| 280 | 234 236 25 240 29 | divdiv32d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) / ( N ^ N ) ) ) | 
						
							| 281 | 25 26 27 5 | expdivd |  |-  ( N e. NN -> ( ( ( N + 1 ) / N ) ^ N ) = ( ( ( N + 1 ) ^ N ) / ( N ^ N ) ) ) | 
						
							| 282 | 279 280 281 | 3eqtr4d |  |-  ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) = ( ( ( N + 1 ) / N ) ^ N ) ) | 
						
							| 283 | 282 | oveq2d |  |-  ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) | 
						
							| 284 | 273 283 | eqtrd |  |-  ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) | 
						
							| 285 | 284 | oveq1d |  |-  ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) | 
						
							| 286 | 162 272 285 | 3eqtrd |  |-  ( N e. NN -> ( ( A ` N ) / ( A ` ( N + 1 ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) | 
						
							| 287 | 286 | fveq2d |  |-  ( N e. NN -> ( log ` ( ( A ` N ) / ( A ` ( N + 1 ) ) ) ) = ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) ) | 
						
							| 288 | 82 83 287 | 3eqtr2d |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) ) | 
						
							| 289 | 38 46 | addcld |  |-  ( N e. NN -> ( 1 + ( 2 x. N ) ) e. CC ) | 
						
							| 290 | 289 | halfcld |  |-  ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) | 
						
							| 291 | 290 31 | mulcld |  |-  ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) | 
						
							| 292 | 291 38 | subcld |  |-  ( N e. NN -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) | 
						
							| 293 | 3 | a1i |  |-  ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) ) | 
						
							| 294 |  | simpr |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> n = N ) | 
						
							| 295 | 294 | oveq2d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( 2 x. n ) = ( 2 x. N ) ) | 
						
							| 296 | 295 | oveq2d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( 1 + ( 2 x. n ) ) = ( 1 + ( 2 x. N ) ) ) | 
						
							| 297 | 296 | oveq1d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( 1 + ( 2 x. n ) ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) | 
						
							| 298 | 294 | oveq1d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( n + 1 ) = ( N + 1 ) ) | 
						
							| 299 | 298 294 | oveq12d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( n + 1 ) / n ) = ( ( N + 1 ) / N ) ) | 
						
							| 300 | 299 | fveq2d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( log ` ( ( n + 1 ) / n ) ) = ( log ` ( ( N + 1 ) / N ) ) ) | 
						
							| 301 | 297 300 | oveq12d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) | 
						
							| 302 | 301 | oveq1d |  |-  ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) | 
						
							| 303 |  | simpl |  |-  ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> N e. NN ) | 
						
							| 304 |  | simpr |  |-  ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) | 
						
							| 305 | 293 302 303 304 | fvmptd |  |-  ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) | 
						
							| 306 | 292 305 | mpdan |  |-  ( N e. NN -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) | 
						
							| 307 | 55 288 306 | 3eqtr4d |  |-  ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) |