Step |
Hyp |
Ref |
Expression |
1 |
|
structgrssvtx.g |
|- ( ph -> G Struct X ) |
2 |
|
structgrssvtx.v |
|- ( ph -> V e. Y ) |
3 |
|
structgrssvtx.e |
|- ( ph -> E e. Z ) |
4 |
|
structgrssvtx.s |
|- ( ph -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
5 |
1 2 3 4
|
structgrssvtxlem |
|- ( ph -> 2 <_ ( # ` dom G ) ) |
6 |
|
opex |
|- <. ( Base ` ndx ) , V >. e. _V |
7 |
|
opex |
|- <. ( .ef ` ndx ) , E >. e. _V |
8 |
6 7
|
prss |
|- ( ( <. ( Base ` ndx ) , V >. e. G /\ <. ( .ef ` ndx ) , E >. e. G ) <-> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
9 |
|
simpr |
|- ( ( <. ( Base ` ndx ) , V >. e. G /\ <. ( .ef ` ndx ) , E >. e. G ) -> <. ( .ef ` ndx ) , E >. e. G ) |
10 |
8 9
|
sylbir |
|- ( { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G -> <. ( .ef ` ndx ) , E >. e. G ) |
11 |
4 10
|
syl |
|- ( ph -> <. ( .ef ` ndx ) , E >. e. G ) |
12 |
1 5 3 11
|
edgfiedgval |
|- ( ph -> ( iEdg ` G ) = E ) |