| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subadd4b.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
subadd4b.2 |
|- ( ph -> B e. CC ) |
| 3 |
|
subadd4b.3 |
|- ( ph -> C e. CC ) |
| 4 |
|
subadd4b.4 |
|- ( ph -> D e. CC ) |
| 5 |
1 2 4 3
|
subadd4d |
|- ( ph -> ( ( A - B ) - ( D - C ) ) = ( ( A + C ) - ( B + D ) ) ) |
| 6 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 7 |
6 4 3
|
subsub2d |
|- ( ph -> ( ( A - B ) - ( D - C ) ) = ( ( A - B ) + ( C - D ) ) ) |
| 8 |
2 4
|
addcomd |
|- ( ph -> ( B + D ) = ( D + B ) ) |
| 9 |
8
|
oveq2d |
|- ( ph -> ( ( A + C ) - ( B + D ) ) = ( ( A + C ) - ( D + B ) ) ) |
| 10 |
1 3 4 2
|
addsub4d |
|- ( ph -> ( ( A + C ) - ( D + B ) ) = ( ( A - D ) + ( C - B ) ) ) |
| 11 |
9 10
|
eqtrd |
|- ( ph -> ( ( A + C ) - ( B + D ) ) = ( ( A - D ) + ( C - B ) ) ) |
| 12 |
5 7 11
|
3eqtr3d |
|- ( ph -> ( ( A - B ) + ( C - D ) ) = ( ( A - D ) + ( C - B ) ) ) |