Metamath Proof Explorer


Theorem subadd4b

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses subadd4b.1 φA
subadd4b.2 φB
subadd4b.3 φC
subadd4b.4 φD
Assertion subadd4b φAB+C-D=AD+C-B

Proof

Step Hyp Ref Expression
1 subadd4b.1 φA
2 subadd4b.2 φB
3 subadd4b.3 φC
4 subadd4b.4 φD
5 1 2 4 3 subadd4d φA-B-DC=A+C-B+D
6 1 2 subcld φAB
7 6 4 3 subsub2d φA-B-DC=AB+C-D
8 2 4 addcomd φB+D=D+B
9 8 oveq2d φA+C-B+D=A+C-D+B
10 1 3 4 2 addsub4d φA+C-D+B=AD+C-B
11 9 10 eqtrd φA+C-B+D=AD+C-B
12 5 7 11 3eqtr3d φAB+C-D=AD+C-B