| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrlttri5d.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
xrlttri5d.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
xrlttri5d.aneb |
|- ( ph -> A =/= B ) |
| 4 |
|
xrlttri5d.nlt |
|- ( ph -> -. B < A ) |
| 5 |
3
|
neneqd |
|- ( ph -> -. A = B ) |
| 6 |
|
xrlttri3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 7 |
1 2 6
|
syl2anc |
|- ( ph -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) |
| 8 |
5 7
|
mtbid |
|- ( ph -> -. ( -. A < B /\ -. B < A ) ) |
| 9 |
|
oran |
|- ( ( A < B \/ B < A ) <-> -. ( -. A < B /\ -. B < A ) ) |
| 10 |
8 9
|
sylibr |
|- ( ph -> ( A < B \/ B < A ) ) |
| 11 |
10 4
|
jca |
|- ( ph -> ( ( A < B \/ B < A ) /\ -. B < A ) ) |
| 12 |
|
pm5.61 |
|- ( ( ( A < B \/ B < A ) /\ -. B < A ) <-> ( A < B /\ -. B < A ) ) |
| 13 |
11 12
|
sylib |
|- ( ph -> ( A < B /\ -. B < A ) ) |
| 14 |
13
|
simpld |
|- ( ph -> A < B ) |