Metamath Proof Explorer


Theorem xrlttri5d

Description: Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses xrlttri5d.a
|- ( ph -> A e. RR* )
xrlttri5d.b
|- ( ph -> B e. RR* )
xrlttri5d.aneb
|- ( ph -> A =/= B )
xrlttri5d.nlt
|- ( ph -> -. B < A )
Assertion xrlttri5d
|- ( ph -> A < B )

Proof

Step Hyp Ref Expression
1 xrlttri5d.a
 |-  ( ph -> A e. RR* )
2 xrlttri5d.b
 |-  ( ph -> B e. RR* )
3 xrlttri5d.aneb
 |-  ( ph -> A =/= B )
4 xrlttri5d.nlt
 |-  ( ph -> -. B < A )
5 3 neneqd
 |-  ( ph -> -. A = B )
6 xrlttri3
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) )
7 1 2 6 syl2anc
 |-  ( ph -> ( A = B <-> ( -. A < B /\ -. B < A ) ) )
8 5 7 mtbid
 |-  ( ph -> -. ( -. A < B /\ -. B < A ) )
9 oran
 |-  ( ( A < B \/ B < A ) <-> -. ( -. A < B /\ -. B < A ) )
10 8 9 sylibr
 |-  ( ph -> ( A < B \/ B < A ) )
11 10 4 jca
 |-  ( ph -> ( ( A < B \/ B < A ) /\ -. B < A ) )
12 pm5.61
 |-  ( ( ( A < B \/ B < A ) /\ -. B < A ) <-> ( A < B /\ -. B < A ) )
13 11 12 sylib
 |-  ( ph -> ( A < B /\ -. B < A ) )
14 13 simpld
 |-  ( ph -> A < B )