| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3l |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) | 
						
							| 2 |  | simp1 |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> A e. CC ) | 
						
							| 3 | 1 2 | mulcld |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. A ) e. CC ) | 
						
							| 4 |  | divsubdir |  |-  ( ( ( C x. A ) e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( ( ( C x. A ) / C ) - ( B / C ) ) ) | 
						
							| 5 | 3 4 | syld3an1 |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( ( ( C x. A ) / C ) - ( B / C ) ) ) | 
						
							| 6 |  | divcan3 |  |-  ( ( A e. CC /\ C e. CC /\ C =/= 0 ) -> ( ( C x. A ) / C ) = A ) | 
						
							| 7 | 6 | 3expb |  |-  ( ( A e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / C ) = A ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. A ) / C ) = A ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) / C ) - ( B / C ) ) = ( A - ( B / C ) ) ) | 
						
							| 10 | 5 9 | eqtrd |  |-  ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( ( C x. A ) - B ) / C ) = ( A - ( B / C ) ) ) |