Metamath Proof Explorer


Theorem subdivcomb1

Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)

Ref Expression
Assertion subdivcomb1 ABCC0CABC=ABC

Proof

Step Hyp Ref Expression
1 simp3l ABCC0C
2 simp1 ABCC0A
3 1 2 mulcld ABCC0CA
4 divsubdir CABCC0CABC=CACBC
5 3 4 syld3an1 ABCC0CABC=CACBC
6 divcan3 ACC0CAC=A
7 6 3expb ACC0CAC=A
8 7 3adant2 ABCC0CAC=A
9 8 oveq1d ABCC0CACBC=ABC
10 5 9 eqtrd ABCC0CABC=ABC