Metamath Proof Explorer


Theorem subdivcomb2

Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013)

Ref Expression
Assertion subdivcomb2 ABCC0ACBC=ACB

Proof

Step Hyp Ref Expression
1 simp3l ABCC0C
2 simp2 ABCC0B
3 1 2 mulcld ABCC0CB
4 divsubdir ACBCC0ACBC=ACCBC
5 3 4 syld3an2 ABCC0ACBC=ACCBC
6 simprl BCC0C
7 simpl BCC0B
8 simpr BCC0CC0
9 div23 CBCC0CBC=CCB
10 6 7 8 9 syl3anc BCC0CBC=CCB
11 divid CC0CC=1
12 11 oveq1d CC0CCB=1B
13 mullid B1B=B
14 12 13 sylan9eqr BCC0CCB=B
15 10 14 eqtrd BCC0CBC=B
16 15 3adant1 ABCC0CBC=B
17 16 oveq2d ABCC0ACCBC=ACB
18 5 17 eqtrd ABCC0ACBC=ACB