Step |
Hyp |
Ref |
Expression |
1 |
|
subgrtrl |
|- ( S SubGraph G -> ( F ( Trails ` S ) P -> F ( Trails ` G ) P ) ) |
2 |
|
idd |
|- ( S SubGraph G -> ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) ) |
3 |
|
idd |
|- ( S SubGraph G -> ( ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
4 |
1 2 3
|
3anim123d |
|- ( S SubGraph G -> ( ( F ( Trails ` S ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) -> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) ) |
5 |
|
ispth |
|- ( F ( Paths ` S ) P <-> ( F ( Trails ` S ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
6 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
7 |
4 5 6
|
3imtr4g |
|- ( S SubGraph G -> ( F ( Paths ` S ) P -> F ( Paths ` G ) P ) ) |