Step |
Hyp |
Ref |
Expression |
1 |
|
subgrtrl |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐹 ( Trails ‘ 𝑆 ) 𝑃 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) ) |
2 |
|
idd |
⊢ ( 𝑆 SubGraph 𝐺 → ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
3 |
|
idd |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
4 |
1 2 3
|
3anim123d |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝐹 ( Trails ‘ 𝑆 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) → ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) ) |
5 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝑆 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝑆 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
6 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
7 |
4 5 6
|
3imtr4g |
⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐹 ( Paths ‘ 𝑆 ) 𝑃 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) ) |