Metamath Proof Explorer


Theorem subgrpth

Description: If a path exists in a subgraph of a graph G , then that path also exists in G . (Contributed by BTernaryTau, 22-Oct-2023)

Ref Expression
Assertion subgrpth S SubGraph G F Paths S P F Paths G P

Proof

Step Hyp Ref Expression
1 subgrtrl S SubGraph G F Trails S P F Trails G P
2 idd S SubGraph G Fun P 1 ..^ F -1 Fun P 1 ..^ F -1
3 idd S SubGraph G P 0 F P 1 ..^ F = P 0 F P 1 ..^ F =
4 1 2 3 3anim123d S SubGraph G F Trails S P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
5 ispth F Paths S P F Trails S P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
6 ispth F Paths G P F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
7 4 5 6 3imtr4g S SubGraph G F Paths S P F Paths G P