| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sublimc.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
sublimc.2 |
|- G = ( x e. A |-> C ) |
| 3 |
|
sublimc.3 |
|- H = ( x e. A |-> ( B - C ) ) |
| 4 |
|
sublimc.4 |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 5 |
|
sublimc.5 |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 6 |
|
sublimc.6 |
|- ( ph -> E e. ( F limCC D ) ) |
| 7 |
|
sublimc.7 |
|- ( ph -> I e. ( G limCC D ) ) |
| 8 |
|
eqid |
|- ( x e. A |-> -u C ) = ( x e. A |-> -u C ) |
| 9 |
|
eqid |
|- ( x e. A |-> ( B + -u C ) ) = ( x e. A |-> ( B + -u C ) ) |
| 10 |
5
|
negcld |
|- ( ( ph /\ x e. A ) -> -u C e. CC ) |
| 11 |
2 8 5 7
|
neglimc |
|- ( ph -> -u I e. ( ( x e. A |-> -u C ) limCC D ) ) |
| 12 |
1 8 9 4 10 6 11
|
addlimc |
|- ( ph -> ( E + -u I ) e. ( ( x e. A |-> ( B + -u C ) ) limCC D ) ) |
| 13 |
|
limccl |
|- ( F limCC D ) C_ CC |
| 14 |
13 6
|
sselid |
|- ( ph -> E e. CC ) |
| 15 |
|
limccl |
|- ( G limCC D ) C_ CC |
| 16 |
15 7
|
sselid |
|- ( ph -> I e. CC ) |
| 17 |
14 16
|
negsubd |
|- ( ph -> ( E + -u I ) = ( E - I ) ) |
| 18 |
17
|
eqcomd |
|- ( ph -> ( E - I ) = ( E + -u I ) ) |
| 19 |
4 5
|
negsubd |
|- ( ( ph /\ x e. A ) -> ( B + -u C ) = ( B - C ) ) |
| 20 |
19
|
eqcomd |
|- ( ( ph /\ x e. A ) -> ( B - C ) = ( B + -u C ) ) |
| 21 |
20
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( B - C ) ) = ( x e. A |-> ( B + -u C ) ) ) |
| 22 |
3 21
|
eqtrid |
|- ( ph -> H = ( x e. A |-> ( B + -u C ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ph -> ( H limCC D ) = ( ( x e. A |-> ( B + -u C ) ) limCC D ) ) |
| 24 |
12 18 23
|
3eltr4d |
|- ( ph -> ( E - I ) e. ( H limCC D ) ) |