Metamath Proof Explorer


Theorem sublimc

Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses sublimc.f F=xAB
sublimc.2 G=xAC
sublimc.3 H=xABC
sublimc.4 φxAB
sublimc.5 φxAC
sublimc.6 φEFlimD
sublimc.7 φIGlimD
Assertion sublimc φEIHlimD

Proof

Step Hyp Ref Expression
1 sublimc.f F=xAB
2 sublimc.2 G=xAC
3 sublimc.3 H=xABC
4 sublimc.4 φxAB
5 sublimc.5 φxAC
6 sublimc.6 φEFlimD
7 sublimc.7 φIGlimD
8 eqid xAC=xAC
9 eqid xAB+C=xAB+C
10 5 negcld φxAC
11 2 8 5 7 neglimc φIxAClimD
12 1 8 9 4 10 6 11 addlimc φE+- IxAB+ClimD
13 limccl FlimD
14 13 6 sselid φE
15 limccl GlimD
16 15 7 sselid φI
17 14 16 negsubd φE+- I=EI
18 17 eqcomd φEI=E+- I
19 4 5 negsubd φxAB+C=BC
20 19 eqcomd φxABC=B+C
21 20 mpteq2dva φxABC=xAB+C
22 3 21 eqtrid φH=xAB+C
23 22 oveq1d φHlimD=xAB+ClimD
24 12 18 23 3eltr4d φEIHlimD