| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reclimc.f |
|
| 2 |
|
reclimc.g |
|
| 3 |
|
reclimc.b |
|
| 4 |
|
reclimc.c |
|
| 5 |
|
reclimc.cne0 |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
limccl |
|
| 10 |
9 4
|
sselid |
|
| 11 |
10
|
adantr |
|
| 12 |
3
|
eldifad |
|
| 13 |
11 12
|
subcld |
|
| 14 |
12 11
|
mulcld |
|
| 15 |
|
eldifsni |
|
| 16 |
3 15
|
syl |
|
| 17 |
5
|
adantr |
|
| 18 |
12 11 16 17
|
mulne0d |
|
| 19 |
18
|
neneqd |
|
| 20 |
|
elsng |
|
| 21 |
14 20
|
syl |
|
| 22 |
19 21
|
mtbird |
|
| 23 |
14 22
|
eldifd |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
12
|
negcld |
|
| 28 |
1 12 4
|
limcmptdm |
|
| 29 |
|
limcrcl |
|
| 30 |
4 29
|
syl |
|
| 31 |
30
|
simp3d |
|
| 32 |
24 28 10 31
|
constlimc |
|
| 33 |
1 25 12 4
|
neglimc |
|
| 34 |
24 25 26 11 27 32 33
|
addlimc |
|
| 35 |
10
|
negidd |
|
| 36 |
11 12
|
negsubd |
|
| 37 |
36
|
mpteq2dva |
|
| 38 |
37
|
oveq1d |
|
| 39 |
34 35 38
|
3eltr3d |
|
| 40 |
1 24 7 12 11 4 32
|
mullimc |
|
| 41 |
10 10 5 5
|
mulne0d |
|
| 42 |
6 7 8 13 23 39 40 41
|
0ellimcdiv |
|
| 43 |
|
1cnd |
|
| 44 |
43 12 43 11 16 17
|
divsubdivd |
|
| 45 |
11
|
mullidd |
|
| 46 |
12
|
mullidd |
|
| 47 |
45 46
|
oveq12d |
|
| 48 |
47
|
oveq1d |
|
| 49 |
44 48
|
eqtr2d |
|
| 50 |
49
|
mpteq2dva |
|
| 51 |
50
|
oveq1d |
|
| 52 |
42 51
|
eleqtrd |
|
| 53 |
|
eqid |
|
| 54 |
12 16
|
reccld |
|
| 55 |
10 5
|
reccld |
|
| 56 |
2 53 28 54 31 55
|
ellimcabssub0 |
|
| 57 |
52 56
|
mpbird |
|