Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | constlimc.f | |
|
constlimc.a | |
||
constlimc.b | |
||
constlimc.c | |
||
Assertion | constlimc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | constlimc.f | |
|
2 | constlimc.a | |
|
3 | constlimc.b | |
|
4 | constlimc.c | |
|
5 | 1rp | |
|
6 | 5 | a1i | |
7 | simpr | |
|
8 | vex | |
|
9 | nfcv | |
|
10 | csbtt | |
|
11 | 8 9 10 | mp2an | |
12 | 11 3 | eqeltrid | |
13 | 12 | adantr | |
14 | 1 | fvmpts | |
15 | 7 13 14 | syl2anc | |
16 | 15 | oveq1d | |
17 | 11 | oveq1i | |
18 | 16 17 | eqtrdi | |
19 | 18 | fveq2d | |
20 | 3 | subidd | |
21 | 20 | fveq2d | |
22 | 21 | adantr | |
23 | abs0 | |
|
24 | 23 | a1i | |
25 | 19 22 24 | 3eqtrd | |
26 | 25 | adantlr | |
27 | rpgt0 | |
|
28 | 27 | ad2antlr | |
29 | 26 28 | eqbrtrd | |
30 | 29 | a1d | |
31 | 30 | ralrimiva | |
32 | brimralrspcev | |
|
33 | 6 31 32 | syl2anc | |
34 | 33 | ralrimiva | |
35 | 3 | adantr | |
36 | 35 1 | fmptd | |
37 | 36 2 4 | ellimc3 | |
38 | 3 34 37 | mpbir2and | |