Metamath Proof Explorer


Theorem constlimc

Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses constlimc.f F=xAB
constlimc.a φA
constlimc.b φB
constlimc.c φC
Assertion constlimc φBFlimC

Proof

Step Hyp Ref Expression
1 constlimc.f F=xAB
2 constlimc.a φA
3 constlimc.b φB
4 constlimc.c φC
5 1rp 1+
6 5 a1i φy+1+
7 simpr φvAvA
8 vex vV
9 nfcv _xB
10 csbtt vV_xBv/xB=B
11 8 9 10 mp2an v/xB=B
12 11 3 eqeltrid φv/xB
13 12 adantr φvAv/xB
14 1 fvmpts vAv/xBFv=v/xB
15 7 13 14 syl2anc φvAFv=v/xB
16 15 oveq1d φvAFvB=v/xBB
17 11 oveq1i v/xBB=BB
18 16 17 eqtrdi φvAFvB=BB
19 18 fveq2d φvAFvB=BB
20 3 subidd φBB=0
21 20 fveq2d φBB=0
22 21 adantr φvABB=0
23 abs0 0=0
24 23 a1i φvA0=0
25 19 22 24 3eqtrd φvAFvB=0
26 25 adantlr φy+vAFvB=0
27 rpgt0 y+0<y
28 27 ad2antlr φy+vA0<y
29 26 28 eqbrtrd φy+vAFvB<y
30 29 a1d φy+vAvCvC<1FvB<y
31 30 ralrimiva φy+vAvCvC<1FvB<y
32 brimralrspcev 1+vAvCvC<1FvB<yw+vAvCvC<wFvB<y
33 6 31 32 syl2anc φy+w+vAvCvC<wFvB<y
34 33 ralrimiva φy+w+vAvCvC<wFvB<y
35 3 adantr φxAB
36 35 1 fmptd φF:A
37 36 2 4 ellimc3 φBFlimCBy+w+vAvCvC<wFvB<y
38 3 34 37 mpbir2and φBFlimC