| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reclimc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 2 |
|
reclimc.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐵 ) ) |
| 3 |
|
reclimc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
| 4 |
|
reclimc.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ) |
| 5 |
|
reclimc.cne0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) |
| 7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) |
| 8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) |
| 9 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ℂ |
| 10 |
9 4
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 |
3
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 13 |
11 12
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 − 𝐵 ) ∈ ℂ ) |
| 14 |
12 11
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 15 |
|
eldifsni |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) → 𝐵 ≠ 0 ) |
| 16 |
3 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
| 18 |
12 11 16 17
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ≠ 0 ) |
| 19 |
18
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐵 · 𝐶 ) = 0 ) |
| 20 |
|
elsng |
⊢ ( ( 𝐵 · 𝐶 ) ∈ ℂ → ( ( 𝐵 · 𝐶 ) ∈ { 0 } ↔ ( 𝐵 · 𝐶 ) = 0 ) ) |
| 21 |
14 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 · 𝐶 ) ∈ { 0 } ↔ ( 𝐵 · 𝐶 ) = 0 ) ) |
| 22 |
19 21
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝐵 · 𝐶 ) ∈ { 0 } ) |
| 23 |
14 22
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 24 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 25 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) |
| 26 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) |
| 27 |
12
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℂ ) |
| 28 |
1 12 4
|
limcmptdm |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 29 |
|
limcrcl |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
| 30 |
4 29
|
syl |
⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
| 31 |
30
|
simp3d |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 32 |
24 28 10 31
|
constlimc |
⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) limℂ 𝐷 ) ) |
| 33 |
1 25 12 4
|
neglimc |
⊢ ( 𝜑 → - 𝐶 ∈ ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) limℂ 𝐷 ) ) |
| 34 |
24 25 26 11 27 32 33
|
addlimc |
⊢ ( 𝜑 → ( 𝐶 + - 𝐶 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) limℂ 𝐷 ) ) |
| 35 |
10
|
negidd |
⊢ ( 𝜑 → ( 𝐶 + - 𝐶 ) = 0 ) |
| 36 |
11 12
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 + - 𝐵 ) = ( 𝐶 − 𝐵 ) ) |
| 37 |
36
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) ) |
| 38 |
37
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 + - 𝐵 ) ) limℂ 𝐷 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) limℂ 𝐷 ) ) |
| 39 |
34 35 38
|
3eltr3d |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐵 ) ) limℂ 𝐷 ) ) |
| 40 |
1 24 7 12 11 4 32
|
mullimc |
⊢ ( 𝜑 → ( 𝐶 · 𝐶 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · 𝐶 ) ) limℂ 𝐷 ) ) |
| 41 |
10 10 5 5
|
mulne0d |
⊢ ( 𝜑 → ( 𝐶 · 𝐶 ) ≠ 0 ) |
| 42 |
6 7 8 13 23 39 40 41
|
0ellimcdiv |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) limℂ 𝐷 ) ) |
| 43 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 1 ∈ ℂ ) |
| 44 |
43 12 43 11 16 17
|
divsubdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) = ( ( ( 1 · 𝐶 ) − ( 1 · 𝐵 ) ) / ( 𝐵 · 𝐶 ) ) ) |
| 45 |
11
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 · 𝐶 ) = 𝐶 ) |
| 46 |
12
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 · 𝐵 ) = 𝐵 ) |
| 47 |
45 46
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 1 · 𝐶 ) − ( 1 · 𝐵 ) ) = ( 𝐶 − 𝐵 ) ) |
| 48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 1 · 𝐶 ) − ( 1 · 𝐵 ) ) / ( 𝐵 · 𝐶 ) ) = ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) |
| 49 |
44 48
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) = ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) |
| 50 |
49
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ( 𝐶 − 𝐵 ) / ( 𝐵 · 𝐶 ) ) ) limℂ 𝐷 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) |
| 52 |
42 51
|
eleqtrd |
⊢ ( 𝜑 → 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) |
| 53 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) |
| 54 |
12 16
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 55 |
10 5
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℂ ) |
| 56 |
2 53 28 54 31 55
|
ellimcabssub0 |
⊢ ( 𝜑 → ( ( 1 / 𝐶 ) ∈ ( 𝐺 limℂ 𝐷 ) ↔ 0 ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( ( 1 / 𝐵 ) − ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) ) |
| 57 |
52 56
|
mpbird |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ( 𝐺 limℂ 𝐷 ) ) |