Metamath Proof Explorer


Theorem neglimc

Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses neglimc.f 𝐹 = ( 𝑥𝐴𝐵 )
neglimc.g 𝐺 = ( 𝑥𝐴 ↦ - 𝐵 )
neglimc.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
neglimc.c ( 𝜑𝐶 ∈ ( 𝐹 lim 𝐷 ) )
Assertion neglimc ( 𝜑 → - 𝐶 ∈ ( 𝐺 lim 𝐷 ) )

Proof

Step Hyp Ref Expression
1 neglimc.f 𝐹 = ( 𝑥𝐴𝐵 )
2 neglimc.g 𝐺 = ( 𝑥𝐴 ↦ - 𝐵 )
3 neglimc.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
4 neglimc.c ( 𝜑𝐶 ∈ ( 𝐹 lim 𝐷 ) )
5 limccl ( 𝐹 lim 𝐷 ) ⊆ ℂ
6 5 4 sseldi ( 𝜑𝐶 ∈ ℂ )
7 6 negcld ( 𝜑 → - 𝐶 ∈ ℂ )
8 3 1 fmptd ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
9 1 3 4 limcmptdm ( 𝜑𝐴 ⊆ ℂ )
10 limcrcl ( 𝐶 ∈ ( 𝐹 lim 𝐷 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) )
11 4 10 syl ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) )
12 11 simp3d ( 𝜑𝐷 ∈ ℂ )
13 8 9 12 ellimc3 ( 𝜑 → ( 𝐶 ∈ ( 𝐹 lim 𝐷 ) ↔ ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ) ) )
14 4 13 mpbid ( 𝜑 → ( 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ) )
15 14 simprd ( 𝜑 → ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) )
16 15 r19.21bi ( ( 𝜑𝑦 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) )
17 simplll ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) → 𝜑 )
18 17 3ad2ant1 ( ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) ∧ ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) ) → 𝜑 )
19 simp1r ( ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) ∧ ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) ) → 𝑣𝐴 )
20 simp3 ( ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) ∧ ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) ) → ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) )
21 simp2 ( ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) ∧ ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) ) → ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) )
22 20 21 mpd ( ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) ∧ ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 )
23 nfv 𝑥 ( 𝜑𝑣𝐴 )
24 nfmpt1 𝑥 ( 𝑥𝐴 ↦ - 𝐵 )
25 2 24 nfcxfr 𝑥 𝐺
26 nfcv 𝑥 𝑣
27 25 26 nffv 𝑥 ( 𝐺𝑣 )
28 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
29 1 28 nfcxfr 𝑥 𝐹
30 29 26 nffv 𝑥 ( 𝐹𝑣 )
31 30 nfneg 𝑥 - ( 𝐹𝑣 )
32 27 31 nfeq 𝑥 ( 𝐺𝑣 ) = - ( 𝐹𝑣 )
33 23 32 nfim 𝑥 ( ( 𝜑𝑣𝐴 ) → ( 𝐺𝑣 ) = - ( 𝐹𝑣 ) )
34 eleq1w ( 𝑥 = 𝑣 → ( 𝑥𝐴𝑣𝐴 ) )
35 34 anbi2d ( 𝑥 = 𝑣 → ( ( 𝜑𝑥𝐴 ) ↔ ( 𝜑𝑣𝐴 ) ) )
36 fveq2 ( 𝑥 = 𝑣 → ( 𝐺𝑥 ) = ( 𝐺𝑣 ) )
37 fveq2 ( 𝑥 = 𝑣 → ( 𝐹𝑥 ) = ( 𝐹𝑣 ) )
38 37 negeqd ( 𝑥 = 𝑣 → - ( 𝐹𝑥 ) = - ( 𝐹𝑣 ) )
39 36 38 eqeq12d ( 𝑥 = 𝑣 → ( ( 𝐺𝑥 ) = - ( 𝐹𝑥 ) ↔ ( 𝐺𝑣 ) = - ( 𝐹𝑣 ) ) )
40 35 39 imbi12d ( 𝑥 = 𝑣 → ( ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = - ( 𝐹𝑥 ) ) ↔ ( ( 𝜑𝑣𝐴 ) → ( 𝐺𝑣 ) = - ( 𝐹𝑣 ) ) ) )
41 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
42 3 negcld ( ( 𝜑𝑥𝐴 ) → - 𝐵 ∈ ℂ )
43 2 fvmpt2 ( ( 𝑥𝐴 ∧ - 𝐵 ∈ ℂ ) → ( 𝐺𝑥 ) = - 𝐵 )
44 41 42 43 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = - 𝐵 )
45 1 fvmpt2 ( ( 𝑥𝐴𝐵 ∈ ℂ ) → ( 𝐹𝑥 ) = 𝐵 )
46 41 3 45 syl2anc ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
47 46 negeqd ( ( 𝜑𝑥𝐴 ) → - ( 𝐹𝑥 ) = - 𝐵 )
48 44 47 eqtr4d ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = - ( 𝐹𝑥 ) )
49 33 40 48 chvarfv ( ( 𝜑𝑣𝐴 ) → ( 𝐺𝑣 ) = - ( 𝐹𝑣 ) )
50 49 oveq1d ( ( 𝜑𝑣𝐴 ) → ( ( 𝐺𝑣 ) − - 𝐶 ) = ( - ( 𝐹𝑣 ) − - 𝐶 ) )
51 8 ffvelrnda ( ( 𝜑𝑣𝐴 ) → ( 𝐹𝑣 ) ∈ ℂ )
52 6 adantr ( ( 𝜑𝑣𝐴 ) → 𝐶 ∈ ℂ )
53 51 52 negsubdi3d ( ( 𝜑𝑣𝐴 ) → - ( ( 𝐹𝑣 ) − 𝐶 ) = ( - ( 𝐹𝑣 ) − - 𝐶 ) )
54 50 53 eqtr4d ( ( 𝜑𝑣𝐴 ) → ( ( 𝐺𝑣 ) − - 𝐶 ) = - ( ( 𝐹𝑣 ) − 𝐶 ) )
55 54 fveq2d ( ( 𝜑𝑣𝐴 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) = ( abs ‘ - ( ( 𝐹𝑣 ) − 𝐶 ) ) )
56 51 52 subcld ( ( 𝜑𝑣𝐴 ) → ( ( 𝐹𝑣 ) − 𝐶 ) ∈ ℂ )
57 56 absnegd ( ( 𝜑𝑣𝐴 ) → ( abs ‘ - ( ( 𝐹𝑣 ) − 𝐶 ) ) = ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) )
58 55 57 eqtrd ( ( 𝜑𝑣𝐴 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) = ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) )
59 58 adantr ( ( ( 𝜑𝑣𝐴 ) ∧ ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) = ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) )
60 simpr ( ( ( 𝜑𝑣𝐴 ) ∧ ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 )
61 59 60 eqbrtrd ( ( ( 𝜑𝑣𝐴 ) ∧ ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 )
62 18 19 22 61 syl21anc ( ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) ∧ ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) ∧ ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 )
63 62 3exp ( ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) ∧ 𝑣𝐴 ) → ( ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) → ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) )
64 63 ralimdva ( ( ( 𝜑𝑦 ∈ ℝ+ ) ∧ 𝑤 ∈ ℝ+ ) → ( ∀ 𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) → ∀ 𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) )
65 64 reximdva ( ( 𝜑𝑦 ∈ ℝ+ ) → ( ∃ 𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑣 ) − 𝐶 ) ) < 𝑦 ) → ∃ 𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) )
66 16 65 mpd ( ( 𝜑𝑦 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 ) )
67 66 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 ) )
68 42 2 fmptd ( 𝜑𝐺 : 𝐴 ⟶ ℂ )
69 68 9 12 ellimc3 ( 𝜑 → ( - 𝐶 ∈ ( 𝐺 lim 𝐷 ) ↔ ( - 𝐶 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ( ( 𝑣𝐷 ∧ ( abs ‘ ( 𝑣𝐷 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐺𝑣 ) − - 𝐶 ) ) < 𝑦 ) ) ) )
70 7 67 69 mpbir2and ( 𝜑 → - 𝐶 ∈ ( 𝐺 lim 𝐷 ) )