| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reclimc.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
reclimc.g |
|- G = ( x e. A |-> ( 1 / B ) ) |
| 3 |
|
reclimc.b |
|- ( ( ph /\ x e. A ) -> B e. ( CC \ { 0 } ) ) |
| 4 |
|
reclimc.c |
|- ( ph -> C e. ( F limCC D ) ) |
| 5 |
|
reclimc.cne0 |
|- ( ph -> C =/= 0 ) |
| 6 |
|
eqid |
|- ( x e. A |-> ( C - B ) ) = ( x e. A |-> ( C - B ) ) |
| 7 |
|
eqid |
|- ( x e. A |-> ( B x. C ) ) = ( x e. A |-> ( B x. C ) ) |
| 8 |
|
eqid |
|- ( x e. A |-> ( ( C - B ) / ( B x. C ) ) ) = ( x e. A |-> ( ( C - B ) / ( B x. C ) ) ) |
| 9 |
|
limccl |
|- ( F limCC D ) C_ CC |
| 10 |
9 4
|
sselid |
|- ( ph -> C e. CC ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 12 |
3
|
eldifad |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 13 |
11 12
|
subcld |
|- ( ( ph /\ x e. A ) -> ( C - B ) e. CC ) |
| 14 |
12 11
|
mulcld |
|- ( ( ph /\ x e. A ) -> ( B x. C ) e. CC ) |
| 15 |
|
eldifsni |
|- ( B e. ( CC \ { 0 } ) -> B =/= 0 ) |
| 16 |
3 15
|
syl |
|- ( ( ph /\ x e. A ) -> B =/= 0 ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ x e. A ) -> C =/= 0 ) |
| 18 |
12 11 16 17
|
mulne0d |
|- ( ( ph /\ x e. A ) -> ( B x. C ) =/= 0 ) |
| 19 |
18
|
neneqd |
|- ( ( ph /\ x e. A ) -> -. ( B x. C ) = 0 ) |
| 20 |
|
elsng |
|- ( ( B x. C ) e. CC -> ( ( B x. C ) e. { 0 } <-> ( B x. C ) = 0 ) ) |
| 21 |
14 20
|
syl |
|- ( ( ph /\ x e. A ) -> ( ( B x. C ) e. { 0 } <-> ( B x. C ) = 0 ) ) |
| 22 |
19 21
|
mtbird |
|- ( ( ph /\ x e. A ) -> -. ( B x. C ) e. { 0 } ) |
| 23 |
14 22
|
eldifd |
|- ( ( ph /\ x e. A ) -> ( B x. C ) e. ( CC \ { 0 } ) ) |
| 24 |
|
eqid |
|- ( x e. A |-> C ) = ( x e. A |-> C ) |
| 25 |
|
eqid |
|- ( x e. A |-> -u B ) = ( x e. A |-> -u B ) |
| 26 |
|
eqid |
|- ( x e. A |-> ( C + -u B ) ) = ( x e. A |-> ( C + -u B ) ) |
| 27 |
12
|
negcld |
|- ( ( ph /\ x e. A ) -> -u B e. CC ) |
| 28 |
1 12 4
|
limcmptdm |
|- ( ph -> A C_ CC ) |
| 29 |
|
limcrcl |
|- ( C e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 30 |
4 29
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 31 |
30
|
simp3d |
|- ( ph -> D e. CC ) |
| 32 |
24 28 10 31
|
constlimc |
|- ( ph -> C e. ( ( x e. A |-> C ) limCC D ) ) |
| 33 |
1 25 12 4
|
neglimc |
|- ( ph -> -u C e. ( ( x e. A |-> -u B ) limCC D ) ) |
| 34 |
24 25 26 11 27 32 33
|
addlimc |
|- ( ph -> ( C + -u C ) e. ( ( x e. A |-> ( C + -u B ) ) limCC D ) ) |
| 35 |
10
|
negidd |
|- ( ph -> ( C + -u C ) = 0 ) |
| 36 |
11 12
|
negsubd |
|- ( ( ph /\ x e. A ) -> ( C + -u B ) = ( C - B ) ) |
| 37 |
36
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( C + -u B ) ) = ( x e. A |-> ( C - B ) ) ) |
| 38 |
37
|
oveq1d |
|- ( ph -> ( ( x e. A |-> ( C + -u B ) ) limCC D ) = ( ( x e. A |-> ( C - B ) ) limCC D ) ) |
| 39 |
34 35 38
|
3eltr3d |
|- ( ph -> 0 e. ( ( x e. A |-> ( C - B ) ) limCC D ) ) |
| 40 |
1 24 7 12 11 4 32
|
mullimc |
|- ( ph -> ( C x. C ) e. ( ( x e. A |-> ( B x. C ) ) limCC D ) ) |
| 41 |
10 10 5 5
|
mulne0d |
|- ( ph -> ( C x. C ) =/= 0 ) |
| 42 |
6 7 8 13 23 39 40 41
|
0ellimcdiv |
|- ( ph -> 0 e. ( ( x e. A |-> ( ( C - B ) / ( B x. C ) ) ) limCC D ) ) |
| 43 |
|
1cnd |
|- ( ( ph /\ x e. A ) -> 1 e. CC ) |
| 44 |
43 12 43 11 16 17
|
divsubdivd |
|- ( ( ph /\ x e. A ) -> ( ( 1 / B ) - ( 1 / C ) ) = ( ( ( 1 x. C ) - ( 1 x. B ) ) / ( B x. C ) ) ) |
| 45 |
11
|
mullidd |
|- ( ( ph /\ x e. A ) -> ( 1 x. C ) = C ) |
| 46 |
12
|
mullidd |
|- ( ( ph /\ x e. A ) -> ( 1 x. B ) = B ) |
| 47 |
45 46
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( ( 1 x. C ) - ( 1 x. B ) ) = ( C - B ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ph /\ x e. A ) -> ( ( ( 1 x. C ) - ( 1 x. B ) ) / ( B x. C ) ) = ( ( C - B ) / ( B x. C ) ) ) |
| 49 |
44 48
|
eqtr2d |
|- ( ( ph /\ x e. A ) -> ( ( C - B ) / ( B x. C ) ) = ( ( 1 / B ) - ( 1 / C ) ) ) |
| 50 |
49
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( ( C - B ) / ( B x. C ) ) ) = ( x e. A |-> ( ( 1 / B ) - ( 1 / C ) ) ) ) |
| 51 |
50
|
oveq1d |
|- ( ph -> ( ( x e. A |-> ( ( C - B ) / ( B x. C ) ) ) limCC D ) = ( ( x e. A |-> ( ( 1 / B ) - ( 1 / C ) ) ) limCC D ) ) |
| 52 |
42 51
|
eleqtrd |
|- ( ph -> 0 e. ( ( x e. A |-> ( ( 1 / B ) - ( 1 / C ) ) ) limCC D ) ) |
| 53 |
|
eqid |
|- ( x e. A |-> ( ( 1 / B ) - ( 1 / C ) ) ) = ( x e. A |-> ( ( 1 / B ) - ( 1 / C ) ) ) |
| 54 |
12 16
|
reccld |
|- ( ( ph /\ x e. A ) -> ( 1 / B ) e. CC ) |
| 55 |
10 5
|
reccld |
|- ( ph -> ( 1 / C ) e. CC ) |
| 56 |
2 53 28 54 31 55
|
ellimcabssub0 |
|- ( ph -> ( ( 1 / C ) e. ( G limCC D ) <-> 0 e. ( ( x e. A |-> ( ( 1 / B ) - ( 1 / C ) ) ) limCC D ) ) ) |
| 57 |
52 56
|
mpbird |
|- ( ph -> ( 1 / C ) e. ( G limCC D ) ) |