| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullimc.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
mullimc.g |
|- G = ( x e. A |-> C ) |
| 3 |
|
mullimc.h |
|- H = ( x e. A |-> ( B x. C ) ) |
| 4 |
|
mullimc.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 5 |
|
mullimc.c |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 6 |
|
mullimc.x |
|- ( ph -> X e. ( F limCC D ) ) |
| 7 |
|
mullimc.y |
|- ( ph -> Y e. ( G limCC D ) ) |
| 8 |
|
limccl |
|- ( F limCC D ) C_ CC |
| 9 |
8 6
|
sselid |
|- ( ph -> X e. CC ) |
| 10 |
|
limccl |
|- ( G limCC D ) C_ CC |
| 11 |
10 7
|
sselid |
|- ( ph -> Y e. CC ) |
| 12 |
9 11
|
mulcld |
|- ( ph -> ( X x. Y ) e. CC ) |
| 13 |
|
simpr |
|- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
| 14 |
9
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> X e. CC ) |
| 15 |
11
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> Y e. CC ) |
| 16 |
|
mulcn2 |
|- ( ( w e. RR+ /\ X e. CC /\ Y e. CC ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
| 17 |
13 14 15 16
|
syl3anc |
|- ( ( ph /\ w e. RR+ ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
| 18 |
4 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
| 19 |
1 4
|
dmmptd |
|- ( ph -> dom F = A ) |
| 20 |
|
limcrcl |
|- ( X e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 21 |
6 20
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 22 |
21
|
simp2d |
|- ( ph -> dom F C_ CC ) |
| 23 |
19 22
|
eqsstrrd |
|- ( ph -> A C_ CC ) |
| 24 |
21
|
simp3d |
|- ( ph -> D e. CC ) |
| 25 |
18 23 24
|
ellimc3 |
|- ( ph -> ( X e. ( F limCC D ) <-> ( X e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) ) |
| 26 |
6 25
|
mpbid |
|- ( ph -> ( X e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) |
| 27 |
26
|
simprd |
|- ( ph -> A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 28 |
27
|
r19.21bi |
|- ( ( ph /\ a e. RR+ ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 29 |
28
|
adantrr |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 30 |
5 2
|
fmptd |
|- ( ph -> G : A --> CC ) |
| 31 |
30 23 24
|
ellimc3 |
|- ( ph -> ( Y e. ( G limCC D ) <-> ( Y e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 32 |
7 31
|
mpbid |
|- ( ph -> ( Y e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 33 |
32
|
simprd |
|- ( ph -> A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 34 |
33
|
r19.21bi |
|- ( ( ph /\ b e. RR+ ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 35 |
34
|
adantrl |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 36 |
|
reeanv |
|- ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) <-> ( E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 37 |
29 35 36
|
sylanbrc |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 38 |
|
ifcl |
|- ( ( e e. RR+ /\ f e. RR+ ) -> if ( e <_ f , e , f ) e. RR+ ) |
| 39 |
38
|
3ad2ant2 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> if ( e <_ f , e , f ) e. RR+ ) |
| 40 |
|
nfv |
|- F/ z ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) |
| 41 |
|
nfv |
|- F/ z ( e e. RR+ /\ f e. RR+ ) |
| 42 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) |
| 43 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) |
| 44 |
42 43
|
nfan |
|- F/ z ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 45 |
40 41 44
|
nf3an |
|- F/ z ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 46 |
|
simp11l |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 47 |
|
simp1rl |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> a e. RR+ ) |
| 48 |
47
|
3ad2ant1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> a e. RR+ ) |
| 49 |
46 48
|
jca |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 50 |
|
simp12 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 51 |
|
simp13l |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 52 |
49 50 51
|
jca31 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) |
| 53 |
|
simp1r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 54 |
|
simp2 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
| 55 |
|
simp3l |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
| 56 |
|
simplll |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) -> ph ) |
| 57 |
56
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 58 |
|
simp1lr |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 59 |
|
simp3r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
| 60 |
|
simp1l |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ph ) |
| 61 |
|
simp2 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. A ) |
| 62 |
23
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
| 63 |
60 61 62
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. CC ) |
| 64 |
60 24
|
syl |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> D e. CC ) |
| 65 |
63 64
|
subcld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( z - D ) e. CC ) |
| 66 |
65
|
abscld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) e. RR ) |
| 67 |
|
rpre |
|- ( e e. RR+ -> e e. RR ) |
| 68 |
67
|
ad2antrl |
|- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> e e. RR ) |
| 69 |
68
|
3ad2ant1 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> e e. RR ) |
| 70 |
|
rpre |
|- ( f e. RR+ -> f e. RR ) |
| 71 |
70
|
ad2antll |
|- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> f e. RR ) |
| 72 |
71
|
3ad2ant1 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> f e. RR ) |
| 73 |
69 72
|
ifcld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) e. RR ) |
| 74 |
|
simp3 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
| 75 |
|
min1 |
|- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ e ) |
| 76 |
69 72 75
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ e ) |
| 77 |
66 73 69 74 76
|
ltletrd |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < e ) |
| 78 |
57 58 54 59 77
|
syl211anc |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < e ) |
| 79 |
55 78
|
jca |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < e ) ) |
| 80 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) |
| 81 |
53 54 79 80
|
syl3c |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) |
| 82 |
52 81
|
syld3an1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) |
| 83 |
|
simp1l |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ph ) |
| 84 |
83 47
|
jca |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 85 |
|
simp2 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 86 |
|
simp3r |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 87 |
84 85 86
|
jca31 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 88 |
|
simp1r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 89 |
|
simp2 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
| 90 |
|
simp3l |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
| 91 |
|
simplll |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> ph ) |
| 92 |
91
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 93 |
|
simp1lr |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 94 |
|
simp3r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
| 95 |
|
min2 |
|- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ f ) |
| 96 |
69 72 95
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ f ) |
| 97 |
66 73 72 74 96
|
ltletrd |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < f ) |
| 98 |
92 93 89 94 97
|
syl211anc |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < f ) |
| 99 |
90 98
|
jca |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < f ) ) |
| 100 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 101 |
88 89 99 100
|
syl3c |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) |
| 102 |
87 101
|
syl3an1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) |
| 103 |
82 102
|
jca |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 104 |
103
|
3exp |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 105 |
45 104
|
ralrimi |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 106 |
|
brimralrspcev |
|- ( ( if ( e <_ f , e , f ) e. RR+ /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 107 |
39 105 106
|
syl2anc |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 108 |
107
|
3exp |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( ( e e. RR+ /\ f e. RR+ ) -> ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) ) |
| 109 |
108
|
rexlimdvv |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 110 |
37 109
|
mpd |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 111 |
110
|
adantlr |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 112 |
111
|
3adant3 |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 113 |
|
nfv |
|- F/ z ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) |
| 114 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 115 |
113 114
|
nfan |
|- F/ z ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 116 |
|
simp1l |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> ph ) |
| 117 |
116
|
ad2antrr |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ph ) |
| 118 |
117
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ph ) |
| 119 |
|
simp2 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> z e. A ) |
| 120 |
|
nfv |
|- F/ x ( ph /\ z e. A ) |
| 121 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> ( B x. C ) ) |
| 122 |
3 121
|
nfcxfr |
|- F/_ x H |
| 123 |
|
nfcv |
|- F/_ x z |
| 124 |
122 123
|
nffv |
|- F/_ x ( H ` z ) |
| 125 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 126 |
1 125
|
nfcxfr |
|- F/_ x F |
| 127 |
126 123
|
nffv |
|- F/_ x ( F ` z ) |
| 128 |
|
nfcv |
|- F/_ x x. |
| 129 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> C ) |
| 130 |
2 129
|
nfcxfr |
|- F/_ x G |
| 131 |
130 123
|
nffv |
|- F/_ x ( G ` z ) |
| 132 |
127 128 131
|
nfov |
|- F/_ x ( ( F ` z ) x. ( G ` z ) ) |
| 133 |
124 132
|
nfeq |
|- F/ x ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) |
| 134 |
120 133
|
nfim |
|- F/ x ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 135 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
| 136 |
135
|
anbi2d |
|- ( x = z -> ( ( ph /\ x e. A ) <-> ( ph /\ z e. A ) ) ) |
| 137 |
|
fveq2 |
|- ( x = z -> ( H ` x ) = ( H ` z ) ) |
| 138 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 139 |
|
fveq2 |
|- ( x = z -> ( G ` x ) = ( G ` z ) ) |
| 140 |
138 139
|
oveq12d |
|- ( x = z -> ( ( F ` x ) x. ( G ` x ) ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 141 |
137 140
|
eqeq12d |
|- ( x = z -> ( ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) <-> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) ) |
| 142 |
136 141
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) <-> ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) ) ) |
| 143 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 144 |
4 5
|
mulcld |
|- ( ( ph /\ x e. A ) -> ( B x. C ) e. CC ) |
| 145 |
3
|
fvmpt2 |
|- ( ( x e. A /\ ( B x. C ) e. CC ) -> ( H ` x ) = ( B x. C ) ) |
| 146 |
143 144 145
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( B x. C ) ) |
| 147 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B ) |
| 148 |
143 4 147
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 149 |
148
|
eqcomd |
|- ( ( ph /\ x e. A ) -> B = ( F ` x ) ) |
| 150 |
2
|
fvmpt2 |
|- ( ( x e. A /\ C e. CC ) -> ( G ` x ) = C ) |
| 151 |
143 5 150
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
| 152 |
151
|
eqcomd |
|- ( ( ph /\ x e. A ) -> C = ( G ` x ) ) |
| 153 |
149 152
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( B x. C ) = ( ( F ` x ) x. ( G ` x ) ) ) |
| 154 |
146 153
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) |
| 155 |
134 142 154
|
chvarfv |
|- ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 156 |
155
|
fvoveq1d |
|- ( ( ph /\ z e. A ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) ) |
| 157 |
118 119 156
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) ) |
| 158 |
18
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 159 |
30
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
| 160 |
158 159
|
jca |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 161 |
118 119 160
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 162 |
|
simpll3 |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
| 163 |
162
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) |
| 164 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) |
| 165 |
164
|
3imp |
|- ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 166 |
165
|
3adant1l |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 167 |
|
fvoveq1 |
|- ( c = ( F ` z ) -> ( abs ` ( c - X ) ) = ( abs ` ( ( F ` z ) - X ) ) ) |
| 168 |
167
|
breq1d |
|- ( c = ( F ` z ) -> ( ( abs ` ( c - X ) ) < a <-> ( abs ` ( ( F ` z ) - X ) ) < a ) ) |
| 169 |
168
|
anbi1d |
|- ( c = ( F ` z ) -> ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) ) ) |
| 170 |
|
oveq1 |
|- ( c = ( F ` z ) -> ( c x. d ) = ( ( F ` z ) x. d ) ) |
| 171 |
170
|
fvoveq1d |
|- ( c = ( F ` z ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) ) |
| 172 |
171
|
breq1d |
|- ( c = ( F ` z ) -> ( ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) ) |
| 173 |
169 172
|
imbi12d |
|- ( c = ( F ` z ) -> ( ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) ) ) |
| 174 |
|
fvoveq1 |
|- ( d = ( G ` z ) -> ( abs ` ( d - Y ) ) = ( abs ` ( ( G ` z ) - Y ) ) ) |
| 175 |
174
|
breq1d |
|- ( d = ( G ` z ) -> ( ( abs ` ( d - Y ) ) < b <-> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) |
| 176 |
175
|
anbi2d |
|- ( d = ( G ` z ) -> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) |
| 177 |
|
oveq2 |
|- ( d = ( G ` z ) -> ( ( F ` z ) x. d ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 178 |
177
|
fvoveq1d |
|- ( d = ( G ` z ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) ) |
| 179 |
178
|
breq1d |
|- ( d = ( G ` z ) -> ( ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) |
| 180 |
176 179
|
imbi12d |
|- ( d = ( G ` z ) -> ( ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) ) |
| 181 |
173 180
|
rspc2v |
|- ( ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) ) |
| 182 |
161 163 166 181
|
syl3c |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) |
| 183 |
157 182
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) |
| 184 |
183
|
3exp |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 185 |
115 184
|
ralrimi |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 186 |
185
|
ex |
|- ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 187 |
186
|
reximdva |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> ( E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 188 |
112 187
|
mpd |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 189 |
188
|
3exp |
|- ( ( ph /\ w e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) ) |
| 190 |
189
|
rexlimdvv |
|- ( ( ph /\ w e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) |
| 191 |
17 190
|
mpd |
|- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 192 |
191
|
ralrimiva |
|- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) |
| 193 |
144 3
|
fmptd |
|- ( ph -> H : A --> CC ) |
| 194 |
193 23 24
|
ellimc3 |
|- ( ph -> ( ( X x. Y ) e. ( H limCC D ) <-> ( ( X x. Y ) e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) ) |
| 195 |
12 192 194
|
mpbir2and |
|- ( ph -> ( X x. Y ) e. ( H limCC D ) ) |