Metamath Proof Explorer


Theorem mullimc

Description: Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mullimc.f
|- F = ( x e. A |-> B )
mullimc.g
|- G = ( x e. A |-> C )
mullimc.h
|- H = ( x e. A |-> ( B x. C ) )
mullimc.b
|- ( ( ph /\ x e. A ) -> B e. CC )
mullimc.c
|- ( ( ph /\ x e. A ) -> C e. CC )
mullimc.x
|- ( ph -> X e. ( F limCC D ) )
mullimc.y
|- ( ph -> Y e. ( G limCC D ) )
Assertion mullimc
|- ( ph -> ( X x. Y ) e. ( H limCC D ) )

Proof

Step Hyp Ref Expression
1 mullimc.f
 |-  F = ( x e. A |-> B )
2 mullimc.g
 |-  G = ( x e. A |-> C )
3 mullimc.h
 |-  H = ( x e. A |-> ( B x. C ) )
4 mullimc.b
 |-  ( ( ph /\ x e. A ) -> B e. CC )
5 mullimc.c
 |-  ( ( ph /\ x e. A ) -> C e. CC )
6 mullimc.x
 |-  ( ph -> X e. ( F limCC D ) )
7 mullimc.y
 |-  ( ph -> Y e. ( G limCC D ) )
8 limccl
 |-  ( F limCC D ) C_ CC
9 8 6 sselid
 |-  ( ph -> X e. CC )
10 limccl
 |-  ( G limCC D ) C_ CC
11 10 7 sselid
 |-  ( ph -> Y e. CC )
12 9 11 mulcld
 |-  ( ph -> ( X x. Y ) e. CC )
13 simpr
 |-  ( ( ph /\ w e. RR+ ) -> w e. RR+ )
14 9 adantr
 |-  ( ( ph /\ w e. RR+ ) -> X e. CC )
15 11 adantr
 |-  ( ( ph /\ w e. RR+ ) -> Y e. CC )
16 mulcn2
 |-  ( ( w e. RR+ /\ X e. CC /\ Y e. CC ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) )
17 13 14 15 16 syl3anc
 |-  ( ( ph /\ w e. RR+ ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) )
18 4 1 fmptd
 |-  ( ph -> F : A --> CC )
19 1 4 dmmptd
 |-  ( ph -> dom F = A )
20 limcrcl
 |-  ( X e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) )
21 6 20 syl
 |-  ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) )
22 21 simp2d
 |-  ( ph -> dom F C_ CC )
23 19 22 eqsstrrd
 |-  ( ph -> A C_ CC )
24 21 simp3d
 |-  ( ph -> D e. CC )
25 18 23 24 ellimc3
 |-  ( ph -> ( X e. ( F limCC D ) <-> ( X e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) ) )
26 6 25 mpbid
 |-  ( ph -> ( X e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) )
27 26 simprd
 |-  ( ph -> A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) )
28 27 r19.21bi
 |-  ( ( ph /\ a e. RR+ ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) )
29 28 adantrr
 |-  ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) )
30 5 2 fmptd
 |-  ( ph -> G : A --> CC )
31 30 23 24 ellimc3
 |-  ( ph -> ( Y e. ( G limCC D ) <-> ( Y e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) )
32 7 31 mpbid
 |-  ( ph -> ( Y e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
33 32 simprd
 |-  ( ph -> A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
34 33 r19.21bi
 |-  ( ( ph /\ b e. RR+ ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
35 34 adantrl
 |-  ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
36 reeanv
 |-  ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) <-> ( E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
37 29 35 36 sylanbrc
 |-  ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
38 ifcl
 |-  ( ( e e. RR+ /\ f e. RR+ ) -> if ( e <_ f , e , f ) e. RR+ )
39 38 3ad2ant2
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> if ( e <_ f , e , f ) e. RR+ )
40 nfv
 |-  F/ z ( ph /\ ( a e. RR+ /\ b e. RR+ ) )
41 nfv
 |-  F/ z ( e e. RR+ /\ f e. RR+ )
42 nfra1
 |-  F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a )
43 nfra1
 |-  F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b )
44 42 43 nfan
 |-  F/ z ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
45 40 41 44 nf3an
 |-  F/ z ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
46 simp11l
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph )
47 simp1rl
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> a e. RR+ )
48 47 3ad2ant1
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> a e. RR+ )
49 46 48 jca
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ph /\ a e. RR+ ) )
50 simp12
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) )
51 simp13l
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) )
52 49 50 51 jca31
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) )
53 simp1r
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) )
54 simp2
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A )
55 simp3l
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D )
56 simplll
 |-  ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) -> ph )
57 56 3ad2ant1
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph )
58 simp1lr
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) )
59 simp3r
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) )
60 simp1l
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ph )
61 simp2
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. A )
62 23 sselda
 |-  ( ( ph /\ z e. A ) -> z e. CC )
63 60 61 62 syl2anc
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. CC )
64 60 24 syl
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> D e. CC )
65 63 64 subcld
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( z - D ) e. CC )
66 65 abscld
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) e. RR )
67 rpre
 |-  ( e e. RR+ -> e e. RR )
68 67 ad2antrl
 |-  ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> e e. RR )
69 68 3ad2ant1
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> e e. RR )
70 rpre
 |-  ( f e. RR+ -> f e. RR )
71 70 ad2antll
 |-  ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> f e. RR )
72 71 3ad2ant1
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> f e. RR )
73 69 72 ifcld
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) e. RR )
74 simp3
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) )
75 min1
 |-  ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ e )
76 69 72 75 syl2anc
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ e )
77 66 73 69 74 76 ltletrd
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < e )
78 57 58 54 59 77 syl211anc
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < e )
79 55 78 jca
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < e ) )
80 rsp
 |-  ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) )
81 53 54 79 80 syl3c
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - X ) ) < a )
82 52 81 syld3an1
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - X ) ) < a )
83 simp1l
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ph )
84 83 47 jca
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( ph /\ a e. RR+ ) )
85 simp2
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( e e. RR+ /\ f e. RR+ ) )
86 simp3r
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
87 84 85 86 jca31
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
88 simp1r
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
89 simp2
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A )
90 simp3l
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D )
91 simplll
 |-  ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> ph )
92 91 3ad2ant1
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph )
93 simp1lr
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) )
94 simp3r
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) )
95 min2
 |-  ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ f )
96 69 72 95 syl2anc
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ f )
97 66 73 72 74 96 ltletrd
 |-  ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < f )
98 92 93 89 94 97 syl211anc
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < f )
99 90 98 jca
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < f ) )
100 rsp
 |-  ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
101 88 89 99 100 syl3c
 |-  ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - Y ) ) < b )
102 87 101 syl3an1
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - Y ) ) < b )
103 82 102 jca
 |-  ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) )
104 103 3exp
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) )
105 45 104 ralrimi
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
106 brimralrspcev
 |-  ( ( if ( e <_ f , e , f ) e. RR+ /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
107 39 105 106 syl2anc
 |-  ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
108 107 3exp
 |-  ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( ( e e. RR+ /\ f e. RR+ ) -> ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) ) )
109 108 rexlimdvv
 |-  ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - X ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) )
110 37 109 mpd
 |-  ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
111 110 adantlr
 |-  ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
112 111 3adant3
 |-  ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
113 nfv
 |-  F/ z ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ )
114 nfra1
 |-  F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) )
115 113 114 nfan
 |-  F/ z ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
116 simp1l
 |-  ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> ph )
117 116 ad2antrr
 |-  ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ph )
118 117 3ad2ant1
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ph )
119 simp2
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> z e. A )
120 nfv
 |-  F/ x ( ph /\ z e. A )
121 nfmpt1
 |-  F/_ x ( x e. A |-> ( B x. C ) )
122 3 121 nfcxfr
 |-  F/_ x H
123 nfcv
 |-  F/_ x z
124 122 123 nffv
 |-  F/_ x ( H ` z )
125 nfmpt1
 |-  F/_ x ( x e. A |-> B )
126 1 125 nfcxfr
 |-  F/_ x F
127 126 123 nffv
 |-  F/_ x ( F ` z )
128 nfcv
 |-  F/_ x x.
129 nfmpt1
 |-  F/_ x ( x e. A |-> C )
130 2 129 nfcxfr
 |-  F/_ x G
131 130 123 nffv
 |-  F/_ x ( G ` z )
132 127 128 131 nfov
 |-  F/_ x ( ( F ` z ) x. ( G ` z ) )
133 124 132 nfeq
 |-  F/ x ( H ` z ) = ( ( F ` z ) x. ( G ` z ) )
134 120 133 nfim
 |-  F/ x ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) )
135 eleq1w
 |-  ( x = z -> ( x e. A <-> z e. A ) )
136 135 anbi2d
 |-  ( x = z -> ( ( ph /\ x e. A ) <-> ( ph /\ z e. A ) ) )
137 fveq2
 |-  ( x = z -> ( H ` x ) = ( H ` z ) )
138 fveq2
 |-  ( x = z -> ( F ` x ) = ( F ` z ) )
139 fveq2
 |-  ( x = z -> ( G ` x ) = ( G ` z ) )
140 138 139 oveq12d
 |-  ( x = z -> ( ( F ` x ) x. ( G ` x ) ) = ( ( F ` z ) x. ( G ` z ) ) )
141 137 140 eqeq12d
 |-  ( x = z -> ( ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) <-> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) )
142 136 141 imbi12d
 |-  ( x = z -> ( ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) ) <-> ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) ) )
143 simpr
 |-  ( ( ph /\ x e. A ) -> x e. A )
144 4 5 mulcld
 |-  ( ( ph /\ x e. A ) -> ( B x. C ) e. CC )
145 3 fvmpt2
 |-  ( ( x e. A /\ ( B x. C ) e. CC ) -> ( H ` x ) = ( B x. C ) )
146 143 144 145 syl2anc
 |-  ( ( ph /\ x e. A ) -> ( H ` x ) = ( B x. C ) )
147 1 fvmpt2
 |-  ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B )
148 143 4 147 syl2anc
 |-  ( ( ph /\ x e. A ) -> ( F ` x ) = B )
149 148 eqcomd
 |-  ( ( ph /\ x e. A ) -> B = ( F ` x ) )
150 2 fvmpt2
 |-  ( ( x e. A /\ C e. CC ) -> ( G ` x ) = C )
151 143 5 150 syl2anc
 |-  ( ( ph /\ x e. A ) -> ( G ` x ) = C )
152 151 eqcomd
 |-  ( ( ph /\ x e. A ) -> C = ( G ` x ) )
153 149 152 oveq12d
 |-  ( ( ph /\ x e. A ) -> ( B x. C ) = ( ( F ` x ) x. ( G ` x ) ) )
154 146 153 eqtrd
 |-  ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) x. ( G ` x ) ) )
155 134 142 154 chvarfv
 |-  ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) )
156 155 fvoveq1d
 |-  ( ( ph /\ z e. A ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) )
157 118 119 156 syl2anc
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) )
158 18 ffvelrnda
 |-  ( ( ph /\ z e. A ) -> ( F ` z ) e. CC )
159 30 ffvelrnda
 |-  ( ( ph /\ z e. A ) -> ( G ` z ) e. CC )
160 158 159 jca
 |-  ( ( ph /\ z e. A ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) )
161 118 119 160 syl2anc
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) )
162 simpll3
 |-  ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) )
163 162 3ad2ant1
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) )
164 rsp
 |-  ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) )
165 164 3imp
 |-  ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) )
166 165 3adant1l
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) )
167 fvoveq1
 |-  ( c = ( F ` z ) -> ( abs ` ( c - X ) ) = ( abs ` ( ( F ` z ) - X ) ) )
168 167 breq1d
 |-  ( c = ( F ` z ) -> ( ( abs ` ( c - X ) ) < a <-> ( abs ` ( ( F ` z ) - X ) ) < a ) )
169 168 anbi1d
 |-  ( c = ( F ` z ) -> ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) ) )
170 oveq1
 |-  ( c = ( F ` z ) -> ( c x. d ) = ( ( F ` z ) x. d ) )
171 170 fvoveq1d
 |-  ( c = ( F ` z ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) )
172 171 breq1d
 |-  ( c = ( F ` z ) -> ( ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) )
173 169 172 imbi12d
 |-  ( c = ( F ` z ) -> ( ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) ) )
174 fvoveq1
 |-  ( d = ( G ` z ) -> ( abs ` ( d - Y ) ) = ( abs ` ( ( G ` z ) - Y ) ) )
175 174 breq1d
 |-  ( d = ( G ` z ) -> ( ( abs ` ( d - Y ) ) < b <-> ( abs ` ( ( G ` z ) - Y ) ) < b ) )
176 175 anbi2d
 |-  ( d = ( G ` z ) -> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) )
177 oveq2
 |-  ( d = ( G ` z ) -> ( ( F ` z ) x. d ) = ( ( F ` z ) x. ( G ` z ) ) )
178 177 fvoveq1d
 |-  ( d = ( G ` z ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) )
179 178 breq1d
 |-  ( d = ( G ` z ) -> ( ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) )
180 176 179 imbi12d
 |-  ( d = ( G ` z ) -> ( ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( X x. Y ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) )
181 173 180 rspc2v
 |-  ( ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> ( ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w ) ) )
182 161 163 166 181 syl3c
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( X x. Y ) ) ) < w )
183 157 182 eqbrtrd
 |-  ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w )
184 183 3exp
 |-  ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) )
185 115 184 ralrimi
 |-  ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) )
186 185 ex
 |-  ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) /\ y e. RR+ ) -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) )
187 186 reximdva
 |-  ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> ( E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - X ) ) < a /\ ( abs ` ( ( G ` z ) - Y ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) )
188 112 187 mpd
 |-  ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) )
189 188 3exp
 |-  ( ( ph /\ w e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) )
190 189 rexlimdvv
 |-  ( ( ph /\ w e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - X ) ) < a /\ ( abs ` ( d - Y ) ) < b ) -> ( abs ` ( ( c x. d ) - ( X x. Y ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) )
191 17 190 mpd
 |-  ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) )
192 191 ralrimiva
 |-  ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) )
193 144 3 fmptd
 |-  ( ph -> H : A --> CC )
194 193 23 24 ellimc3
 |-  ( ph -> ( ( X x. Y ) e. ( H limCC D ) <-> ( ( X x. Y ) e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( X x. Y ) ) ) < w ) ) ) )
195 12 192 194 mpbir2and
 |-  ( ph -> ( X x. Y ) e. ( H limCC D ) )