| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ellimcabssub0.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
ellimcabssub0.g |
|- G = ( x e. A |-> ( B - C ) ) |
| 3 |
|
ellimcabssub0.a |
|- ( ph -> A C_ CC ) |
| 4 |
|
ellimcabssub0.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 5 |
|
ellimcabssub0.p |
|- ( ph -> D e. CC ) |
| 6 |
|
ellimcabssub0.c |
|- ( ph -> C e. CC ) |
| 7 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 8 |
6 7
|
2thd |
|- ( ph -> ( C e. CC <-> 0 e. CC ) ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 10 |
4 9
|
subcld |
|- ( ( ph /\ x e. A ) -> ( B - C ) e. CC ) |
| 11 |
10 2
|
fmptd |
|- ( ph -> G : A --> CC ) |
| 12 |
11
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
| 13 |
12
|
subid1d |
|- ( ( ph /\ z e. A ) -> ( ( G ` z ) - 0 ) = ( G ` z ) ) |
| 14 |
|
simpr |
|- ( ( ph /\ z e. A ) -> z e. A ) |
| 15 |
|
csbov1g |
|- ( z e. _V -> [_ z / x ]_ ( B - C ) = ( [_ z / x ]_ B - C ) ) |
| 16 |
15
|
elv |
|- [_ z / x ]_ ( B - C ) = ( [_ z / x ]_ B - C ) |
| 17 |
|
sban |
|- ( [ z / x ] ( ph /\ x e. A ) <-> ( [ z / x ] ph /\ [ z / x ] x e. A ) ) |
| 18 |
|
nfv |
|- F/ x ph |
| 19 |
18
|
sbf |
|- ( [ z / x ] ph <-> ph ) |
| 20 |
|
clelsb1 |
|- ( [ z / x ] x e. A <-> z e. A ) |
| 21 |
19 20
|
anbi12i |
|- ( ( [ z / x ] ph /\ [ z / x ] x e. A ) <-> ( ph /\ z e. A ) ) |
| 22 |
17 21
|
bitri |
|- ( [ z / x ] ( ph /\ x e. A ) <-> ( ph /\ z e. A ) ) |
| 23 |
4
|
nfth |
|- F/ x ( ( ph /\ x e. A ) -> B e. CC ) |
| 24 |
23
|
sbf |
|- ( [ z / x ] ( ( ph /\ x e. A ) -> B e. CC ) <-> ( ( ph /\ x e. A ) -> B e. CC ) ) |
| 25 |
|
sbim |
|- ( [ z / x ] ( ( ph /\ x e. A ) -> B e. CC ) <-> ( [ z / x ] ( ph /\ x e. A ) -> [ z / x ] B e. CC ) ) |
| 26 |
24 25
|
sylbb1 |
|- ( ( ( ph /\ x e. A ) -> B e. CC ) -> ( [ z / x ] ( ph /\ x e. A ) -> [ z / x ] B e. CC ) ) |
| 27 |
22 26
|
biimtrrid |
|- ( ( ( ph /\ x e. A ) -> B e. CC ) -> ( ( ph /\ z e. A ) -> [ z / x ] B e. CC ) ) |
| 28 |
4 27
|
ax-mp |
|- ( ( ph /\ z e. A ) -> [ z / x ] B e. CC ) |
| 29 |
|
sbsbc |
|- ( [ z / x ] B e. CC <-> [. z / x ]. B e. CC ) |
| 30 |
|
sbcel1g |
|- ( z e. _V -> ( [. z / x ]. B e. CC <-> [_ z / x ]_ B e. CC ) ) |
| 31 |
30
|
elv |
|- ( [. z / x ]. B e. CC <-> [_ z / x ]_ B e. CC ) |
| 32 |
29 31
|
bitri |
|- ( [ z / x ] B e. CC <-> [_ z / x ]_ B e. CC ) |
| 33 |
28 32
|
sylib |
|- ( ( ph /\ z e. A ) -> [_ z / x ]_ B e. CC ) |
| 34 |
6
|
adantr |
|- ( ( ph /\ z e. A ) -> C e. CC ) |
| 35 |
33 34
|
subcld |
|- ( ( ph /\ z e. A ) -> ( [_ z / x ]_ B - C ) e. CC ) |
| 36 |
16 35
|
eqeltrid |
|- ( ( ph /\ z e. A ) -> [_ z / x ]_ ( B - C ) e. CC ) |
| 37 |
2
|
fvmpts |
|- ( ( z e. A /\ [_ z / x ]_ ( B - C ) e. CC ) -> ( G ` z ) = [_ z / x ]_ ( B - C ) ) |
| 38 |
14 36 37
|
syl2anc |
|- ( ( ph /\ z e. A ) -> ( G ` z ) = [_ z / x ]_ ( B - C ) ) |
| 39 |
1
|
fvmpts |
|- ( ( z e. A /\ [_ z / x ]_ B e. CC ) -> ( F ` z ) = [_ z / x ]_ B ) |
| 40 |
14 33 39
|
syl2anc |
|- ( ( ph /\ z e. A ) -> ( F ` z ) = [_ z / x ]_ B ) |
| 41 |
40
|
oveq1d |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) - C ) = ( [_ z / x ]_ B - C ) ) |
| 42 |
16 41
|
eqtr4id |
|- ( ( ph /\ z e. A ) -> [_ z / x ]_ ( B - C ) = ( ( F ` z ) - C ) ) |
| 43 |
13 38 42
|
3eqtrrd |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) - C ) = ( ( G ` z ) - 0 ) ) |
| 44 |
43
|
fveq2d |
|- ( ( ph /\ z e. A ) -> ( abs ` ( ( F ` z ) - C ) ) = ( abs ` ( ( G ` z ) - 0 ) ) ) |
| 45 |
44
|
breq1d |
|- ( ( ph /\ z e. A ) -> ( ( abs ` ( ( F ` z ) - C ) ) < y <-> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) |
| 46 |
45
|
imbi2d |
|- ( ( ph /\ z e. A ) -> ( ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 47 |
46
|
ralbidva |
|- ( ph -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 48 |
47
|
rexbidv |
|- ( ph -> ( E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 49 |
48
|
ralbidv |
|- ( ph -> ( A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 50 |
8 49
|
anbi12d |
|- ( ph -> ( ( C e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) ) <-> ( 0 e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) ) |
| 51 |
4 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
| 52 |
51 3 5
|
ellimc3 |
|- ( ph -> ( C e. ( F limCC D ) <-> ( C e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) ) ) ) |
| 53 |
11 3 5
|
ellimc3 |
|- ( ph -> ( 0 e. ( G limCC D ) <-> ( 0 e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) ) |
| 54 |
50 52 53
|
3bitr4d |
|- ( ph -> ( C e. ( F limCC D ) <-> 0 e. ( G limCC D ) ) ) |