| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ellimcabssub0.f |
|
| 2 |
|
ellimcabssub0.g |
|
| 3 |
|
ellimcabssub0.a |
|
| 4 |
|
ellimcabssub0.b |
|
| 5 |
|
ellimcabssub0.p |
|
| 6 |
|
ellimcabssub0.c |
|
| 7 |
|
0cnd |
|
| 8 |
6 7
|
2thd |
|
| 9 |
6
|
adantr |
|
| 10 |
4 9
|
subcld |
|
| 11 |
10 2
|
fmptd |
|
| 12 |
11
|
ffvelcdmda |
|
| 13 |
12
|
subid1d |
|
| 14 |
|
simpr |
|
| 15 |
|
csbov1g |
|
| 16 |
15
|
elv |
|
| 17 |
|
sban |
|
| 18 |
|
nfv |
|
| 19 |
18
|
sbf |
|
| 20 |
|
clelsb1 |
|
| 21 |
19 20
|
anbi12i |
|
| 22 |
17 21
|
bitri |
|
| 23 |
4
|
nfth |
|
| 24 |
23
|
sbf |
|
| 25 |
|
sbim |
|
| 26 |
24 25
|
sylbb1 |
|
| 27 |
22 26
|
biimtrrid |
|
| 28 |
4 27
|
ax-mp |
|
| 29 |
|
sbsbc |
|
| 30 |
|
sbcel1g |
|
| 31 |
30
|
elv |
|
| 32 |
29 31
|
bitri |
|
| 33 |
28 32
|
sylib |
|
| 34 |
6
|
adantr |
|
| 35 |
33 34
|
subcld |
|
| 36 |
16 35
|
eqeltrid |
|
| 37 |
2
|
fvmpts |
|
| 38 |
14 36 37
|
syl2anc |
|
| 39 |
1
|
fvmpts |
|
| 40 |
14 33 39
|
syl2anc |
|
| 41 |
40
|
oveq1d |
|
| 42 |
16 41
|
eqtr4id |
|
| 43 |
13 38 42
|
3eqtrrd |
|
| 44 |
43
|
fveq2d |
|
| 45 |
44
|
breq1d |
|
| 46 |
45
|
imbi2d |
|
| 47 |
46
|
ralbidva |
|
| 48 |
47
|
rexbidv |
|
| 49 |
48
|
ralbidv |
|
| 50 |
8 49
|
anbi12d |
|
| 51 |
4 1
|
fmptd |
|
| 52 |
51 3 5
|
ellimc3 |
|
| 53 |
11 3 5
|
ellimc3 |
|
| 54 |
50 52 53
|
3bitr4d |
|