Metamath Proof Explorer


Theorem limcdm0

Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcdm0.f φF:
limcdm0.b φB
Assertion limcdm0 φFlimB=

Proof

Step Hyp Ref Expression
1 limcdm0.f φF:
2 limcdm0.b φB
3 limccl FlimB
4 3 sseli xFlimBx
5 4 adantl φxFlimBx
6 simpr φxx
7 1rp 1+
8 ral0 zzBzB<1Fzx<y
9 brimralrspcev 1+zzBzB<1Fzx<yw+zzBzB<wFzx<y
10 7 8 9 mp2an w+zzBzB<wFzx<y
11 10 rgenw y+w+zzBzB<wFzx<y
12 11 a1i φxy+w+zzBzB<wFzx<y
13 1 adantr φxF:
14 0ss
15 14 a1i φx
16 2 adantr φxB
17 13 15 16 ellimc3 φxxFlimBxy+w+zzBzB<wFzx<y
18 6 12 17 mpbir2and φxxFlimB
19 5 18 impbida φxFlimBx
20 19 eqrdv φFlimB=