Metamath Proof Explorer


Theorem islptre

Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses islptre.1 J = topGen ran .
islptre.2 φ A
islptre.3 φ B
Assertion islptre φ B limPt J A a * b * B a b a b A B

Proof

Step Hyp Ref Expression
1 islptre.1 J = topGen ran .
2 islptre.2 φ A
3 islptre.3 φ B
4 retopon topGen ran . TopOn
5 1 4 eqeltri J TopOn
6 5 topontopi J Top
7 6 a1i φ J Top
8 5 toponunii = J
9 8 islp2 J Top A B B limPt J A n nei J B n A B
10 7 2 3 9 syl3anc φ B limPt J A n nei J B n A B
11 simp1r φ n nei J B n A B a * b * B a b n nei J B n A B
12 iooretop a b topGen ran .
13 12 1 eleqtrri a b J
14 13 a1i a * b * B a b a b J
15 snssi B a b B a b
16 15 adantl a * b * B a b B a b
17 ssidd a * b * B a b a b a b
18 sseq2 v = a b B v B a b
19 sseq1 v = a b v a b a b a b
20 18 19 anbi12d v = a b B v v a b B a b a b a b
21 20 rspcev a b J B a b a b a b v J B v v a b
22 14 16 17 21 syl12anc a * b * B a b v J B v v a b
23 ioossre a b
24 22 23 jctil a * b * B a b a b v J B v v a b
25 elioore B a b B
26 25 snssd B a b B
27 26 adantl a * b * B a b B
28 8 isnei J Top B a b nei J B a b v J B v v a b
29 6 27 28 sylancr a * b * B a b a b nei J B a b v J B v v a b
30 24 29 mpbird a * b * B a b a b nei J B
31 30 3adant1 φ n nei J B n A B a * b * B a b a b nei J B
32 ineq1 n = a b n A B = a b A B
33 32 neeq1d n = a b n A B a b A B
34 33 rspccva n nei J B n A B a b nei J B a b A B
35 11 31 34 syl2anc φ n nei J B n A B a * b * B a b a b A B
36 35 3exp φ n nei J B n A B a * b * B a b a b A B
37 36 ralrimivv φ n nei J B n A B a * b * B a b a b A B
38 3 snssd φ B
39 8 isnei J Top B n nei J B n v J B v v n
40 6 38 39 sylancr φ n nei J B n v J B v v n
41 40 simplbda φ n nei J B v J B v v n
42 1 eleq2i v J v topGen ran .
43 42 biimpi v J v topGen ran .
44 43 3ad2ant2 φ v J B v v n v topGen ran .
45 simp1 φ v J B v v n φ
46 simp3l φ v J B v v n B v
47 simpr φ B v B v
48 3 adantr φ B v B
49 snssg B B v B v
50 48 49 syl φ B v B v B v
51 47 50 mpbird φ B v B v
52 45 46 51 syl2anc φ v J B v v n B v
53 44 52 jca φ v J B v v n v topGen ran . B v
54 tg2 v topGen ran . B v u ran . B u u v
55 ioof . : * × * 𝒫
56 ffn . : * × * 𝒫 . Fn * × *
57 ovelrn . Fn * × * u ran . a * b * u = a b
58 55 56 57 mp2b u ran . a * b * u = a b
59 58 biimpi u ran . a * b * u = a b
60 59 adantr u ran . B u u v a * b * u = a b
61 simpll B u u v u = a b B u
62 simpr B u u v u = a b u = a b
63 61 62 eleqtrd B u u v u = a b B a b
64 simplr B u u v u = a b u v
65 62 64 eqsstrrd B u u v u = a b a b v
66 63 65 jca B u u v u = a b B a b a b v
67 66 ex B u u v u = a b B a b a b v
68 67 adantl u ran . B u u v u = a b B a b a b v
69 68 reximdv u ran . B u u v b * u = a b b * B a b a b v
70 69 reximdv u ran . B u u v a * b * u = a b a * b * B a b a b v
71 60 70 mpd u ran . B u u v a * b * B a b a b v
72 71 rexlimiva u ran . B u u v a * b * B a b a b v
73 53 54 72 3syl φ v J B v v n a * b * B a b a b v
74 simpl3r φ v J B v v n a * v n
75 74 adantr φ v J B v v n a * b * v n
76 sstr a b v v n a b n
77 76 expcom v n a b v a b n
78 75 77 syl φ v J B v v n a * b * a b v a b n
79 78 anim2d φ v J B v v n a * b * B a b a b v B a b a b n
80 79 reximdva φ v J B v v n a * b * B a b a b v b * B a b a b n
81 80 reximdva φ v J B v v n a * b * B a b a b v a * b * B a b a b n
82 73 81 mpd φ v J B v v n a * b * B a b a b n
83 82 3exp φ v J B v v n a * b * B a b a b n
84 83 rexlimdv φ v J B v v n a * b * B a b a b n
85 84 adantr φ n nei J B v J B v v n a * b * B a b a b n
86 41 85 mpd φ n nei J B a * b * B a b a b n
87 86 adantlr φ a * b * B a b a b A B n nei J B a * b * B a b a b n
88 nfv a φ
89 nfra1 a a * b * B a b a b A B
90 88 89 nfan a φ a * b * B a b a b A B
91 nfv a n nei J B
92 90 91 nfan a φ a * b * B a b a b A B n nei J B
93 nfv a n A B
94 nfv b φ
95 nfra2w b a * b * B a b a b A B
96 94 95 nfan b φ a * b * B a b a b A B
97 nfv b n nei J B
98 96 97 nfan b φ a * b * B a b a b A B n nei J B
99 nfv b a *
100 98 99 nfan b φ a * b * B a b a b A B n nei J B a *
101 nfv b n A B
102 inss1 a b A B a b
103 simp3r φ a * b * B a b a b A B n nei J B a * b * B a b a b n a b n
104 102 103 sstrid φ a * b * B a b a b A B n nei J B a * b * B a b a b n a b A B n
105 inss2 a b A B A B
106 105 a1i φ a * b * B a b a b A B n nei J B a * b * B a b a b n a b A B A B
107 104 106 ssind φ a * b * B a b a b A B n nei J B a * b * B a b a b n a b A B n A B
108 simpllr φ a * b * B a b a b A B n nei J B a * a * b * B a b a b A B
109 108 3ad2ant1 φ a * b * B a b a b A B n nei J B a * b * B a b a b n a * b * B a b a b A B
110 simp1r φ a * b * B a b a b A B n nei J B a * b * B a b a b n a *
111 simp2 φ a * b * B a b a b A B n nei J B a * b * B a b a b n b *
112 110 111 jca φ a * b * B a b a b A B n nei J B a * b * B a b a b n a * b *
113 simp3l φ a * b * B a b a b A B n nei J B a * b * B a b a b n B a b
114 rsp2 a * b * B a b a b A B a * b * B a b a b A B
115 109 112 113 114 syl3c φ a * b * B a b a b A B n nei J B a * b * B a b a b n a b A B
116 ssn0 a b A B n A B a b A B n A B
117 107 115 116 syl2anc φ a * b * B a b a b A B n nei J B a * b * B a b a b n n A B
118 117 3exp φ a * b * B a b a b A B n nei J B a * b * B a b a b n n A B
119 100 101 118 rexlimd φ a * b * B a b a b A B n nei J B a * b * B a b a b n n A B
120 119 ex φ a * b * B a b a b A B n nei J B a * b * B a b a b n n A B
121 92 93 120 rexlimd φ a * b * B a b a b A B n nei J B a * b * B a b a b n n A B
122 87 121 mpd φ a * b * B a b a b A B n nei J B n A B
123 122 ralrimiva φ a * b * B a b a b A B n nei J B n A B
124 37 123 impbida φ n nei J B n A B a * b * B a b a b A B
125 10 124 bitrd φ B limPt J A a * b * B a b a b A B