Metamath Proof Explorer


Theorem limccog

Description: Limit of the composition of two functions. If the limit of F at A is B and the limit of G at B is C , then the limit of G o. F at A is C . With respect to limcco and limccnp , here we drop continuity assumptions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limccog.1 φranFdomGB
limccog.2 φBFlimA
limccog.3 φCGlimB
Assertion limccog φCGFlimA

Proof

Step Hyp Ref Expression
1 limccog.1 φranFdomGB
2 limccog.2 φBFlimA
3 limccog.3 φCGlimB
4 limccl GlimB
5 4 3 sselid φC
6 limcrcl CGlimBG:domGdomGB
7 3 6 syl φG:domGdomGB
8 7 simp1d φG:domG
9 7 simp2d φdomG
10 7 simp3d φB
11 eqid TopOpenfld=TopOpenfld
12 8 9 10 11 ellimc2 φCGlimBCuTopOpenfldCuvTopOpenfldBvGvdomGBu
13 3 12 mpbid φCuTopOpenfldCuvTopOpenfldBvGvdomGBu
14 13 simprd φuTopOpenfldCuvTopOpenfldBvGvdomGBu
15 14 r19.21bi φuTopOpenfldCuvTopOpenfldBvGvdomGBu
16 15 imp φuTopOpenfldCuvTopOpenfldBvGvdomGBu
17 simp1ll φuTopOpenfldCuvTopOpenfldBvGvdomGBuφ
18 simp2 φuTopOpenfldCuvTopOpenfldBvGvdomGBuvTopOpenfld
19 simp3l φuTopOpenfldCuvTopOpenfldBvGvdomGBuBv
20 limcrcl BFlimAF:domFdomFA
21 2 20 syl φF:domFdomFA
22 21 simp1d φF:domF
23 21 simp2d φdomF
24 21 simp3d φA
25 22 23 24 11 ellimc2 φBFlimABvTopOpenfldBvwTopOpenfldAwFwdomFAv
26 2 25 mpbid φBvTopOpenfldBvwTopOpenfldAwFwdomFAv
27 26 simprd φvTopOpenfldBvwTopOpenfldAwFwdomFAv
28 27 r19.21bi φvTopOpenfldBvwTopOpenfldAwFwdomFAv
29 28 imp φvTopOpenfldBvwTopOpenfldAwFwdomFAv
30 17 18 19 29 syl21anc φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldAwFwdomFAv
31 imaco GFwdomFA=GFwdomFA
32 17 ad2antrr φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldFwdomFAvφ
33 simpl3r φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldGvdomGBu
34 33 adantr φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldFwdomFAvGvdomGBu
35 simpr φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldFwdomFAvFwdomFAv
36 simpr φFwdomFAvFwdomFAv
37 imassrn FwdomFAranF
38 37 1 sstrid φFwdomFAdomGB
39 38 adantr φFwdomFAvFwdomFAdomGB
40 36 39 ssind φFwdomFAvFwdomFAvdomGB
41 imass2 FwdomFAvdomGBGFwdomFAGvdomGB
42 40 41 syl φFwdomFAvGFwdomFAGvdomGB
43 42 adantlr φGvdomGBuFwdomFAvGFwdomFAGvdomGB
44 simplr φGvdomGBuFwdomFAvGvdomGBu
45 43 44 sstrd φGvdomGBuFwdomFAvGFwdomFAu
46 32 34 35 45 syl21anc φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldFwdomFAvGFwdomFAu
47 31 46 eqsstrid φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldFwdomFAvGFwdomFAu
48 47 ex φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldFwdomFAvGFwdomFAu
49 48 anim2d φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldAwFwdomFAvAwGFwdomFAu
50 49 reximdva φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldAwFwdomFAvwTopOpenfldAwGFwdomFAu
51 30 50 mpd φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldAwGFwdomFAu
52 51 rexlimdv3a φuTopOpenfldCuvTopOpenfldBvGvdomGBuwTopOpenfldAwGFwdomFAu
53 16 52 mpd φuTopOpenfldCuwTopOpenfldAwGFwdomFAu
54 53 ex φuTopOpenfldCuwTopOpenfldAwGFwdomFAu
55 54 ralrimiva φuTopOpenfldCuwTopOpenfldAwGFwdomFAu
56 22 ffund φFunF
57 fdmrn FunFF:domFranF
58 56 57 sylib φF:domFranF
59 1 difss2d φranFdomG
60 58 59 fssd φF:domFdomG
61 fco G:domGF:domFdomGGF:domF
62 8 60 61 syl2anc φGF:domF
63 62 23 24 11 ellimc2 φCGFlimACuTopOpenfldCuwTopOpenfldAwGFwdomFAu
64 5 55 63 mpbir2and φCGFlimA