Step |
Hyp |
Ref |
Expression |
1 |
|
limccog.1 |
|- ( ph -> ran F C_ ( dom G \ { B } ) ) |
2 |
|
limccog.2 |
|- ( ph -> B e. ( F limCC A ) ) |
3 |
|
limccog.3 |
|- ( ph -> C e. ( G limCC B ) ) |
4 |
|
limccl |
|- ( G limCC B ) C_ CC |
5 |
4 3
|
sselid |
|- ( ph -> C e. CC ) |
6 |
|
limcrcl |
|- ( C e. ( G limCC B ) -> ( G : dom G --> CC /\ dom G C_ CC /\ B e. CC ) ) |
7 |
3 6
|
syl |
|- ( ph -> ( G : dom G --> CC /\ dom G C_ CC /\ B e. CC ) ) |
8 |
7
|
simp1d |
|- ( ph -> G : dom G --> CC ) |
9 |
7
|
simp2d |
|- ( ph -> dom G C_ CC ) |
10 |
7
|
simp3d |
|- ( ph -> B e. CC ) |
11 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
12 |
8 9 10 11
|
ellimc2 |
|- ( ph -> ( C e. ( G limCC B ) <-> ( C e. CC /\ A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) ) ) |
13 |
3 12
|
mpbid |
|- ( ph -> ( C e. CC /\ A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) ) |
14 |
13
|
simprd |
|- ( ph -> A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) |
15 |
14
|
r19.21bi |
|- ( ( ph /\ u e. ( TopOpen ` CCfld ) ) -> ( C e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) ) |
16 |
15
|
imp |
|- ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) |
17 |
|
simp1ll |
|- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> ph ) |
18 |
|
simp2 |
|- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> v e. ( TopOpen ` CCfld ) ) |
19 |
|
simp3l |
|- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> B e. v ) |
20 |
|
limcrcl |
|- ( B e. ( F limCC A ) -> ( F : dom F --> CC /\ dom F C_ CC /\ A e. CC ) ) |
21 |
2 20
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ A e. CC ) ) |
22 |
21
|
simp1d |
|- ( ph -> F : dom F --> CC ) |
23 |
21
|
simp2d |
|- ( ph -> dom F C_ CC ) |
24 |
21
|
simp3d |
|- ( ph -> A e. CC ) |
25 |
22 23 24 11
|
ellimc2 |
|- ( ph -> ( B e. ( F limCC A ) <-> ( B e. CC /\ A. v e. ( TopOpen ` CCfld ) ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) ) ) |
26 |
2 25
|
mpbid |
|- ( ph -> ( B e. CC /\ A. v e. ( TopOpen ` CCfld ) ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) ) |
27 |
26
|
simprd |
|- ( ph -> A. v e. ( TopOpen ` CCfld ) ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) |
28 |
27
|
r19.21bi |
|- ( ( ph /\ v e. ( TopOpen ` CCfld ) ) -> ( B e. v -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) ) |
29 |
28
|
imp |
|- ( ( ( ph /\ v e. ( TopOpen ` CCfld ) ) /\ B e. v ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) |
30 |
17 18 19 29
|
syl21anc |
|- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) ) |
31 |
|
imaco |
|- ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) = ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) |
32 |
17
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ph ) |
33 |
|
simpl3r |
|- ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) -> ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) |
34 |
33
|
adantr |
|- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) |
35 |
|
simpr |
|- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) |
36 |
|
simpr |
|- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) |
37 |
|
imassrn |
|- ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ran F |
38 |
37 1
|
sstrid |
|- ( ph -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( dom G \ { B } ) ) |
39 |
38
|
adantr |
|- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( dom G \ { B } ) ) |
40 |
36 39
|
ssind |
|- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( v i^i ( dom G \ { B } ) ) ) |
41 |
|
imass2 |
|- ( ( F " ( w i^i ( dom F \ { A } ) ) ) C_ ( v i^i ( dom G \ { B } ) ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ ( G " ( v i^i ( dom G \ { B } ) ) ) ) |
42 |
40 41
|
syl |
|- ( ( ph /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ ( G " ( v i^i ( dom G \ { B } ) ) ) ) |
43 |
42
|
adantlr |
|- ( ( ( ph /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ ( G " ( v i^i ( dom G \ { B } ) ) ) ) |
44 |
|
simplr |
|- ( ( ( ph /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) |
45 |
43 44
|
sstrd |
|- ( ( ( ph /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ u ) |
46 |
32 34 35 45
|
syl21anc |
|- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( G " ( F " ( w i^i ( dom F \ { A } ) ) ) ) C_ u ) |
47 |
31 46
|
eqsstrid |
|- ( ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) |
48 |
47
|
ex |
|- ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) -> ( ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v -> ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) |
49 |
48
|
anim2d |
|- ( ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) /\ w e. ( TopOpen ` CCfld ) ) -> ( ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
50 |
49
|
reximdva |
|- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> ( E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( F " ( w i^i ( dom F \ { A } ) ) ) C_ v ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
51 |
30 50
|
mpd |
|- ( ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) /\ v e. ( TopOpen ` CCfld ) /\ ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) |
52 |
51
|
rexlimdv3a |
|- ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) -> ( E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( G " ( v i^i ( dom G \ { B } ) ) ) C_ u ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
53 |
16 52
|
mpd |
|- ( ( ( ph /\ u e. ( TopOpen ` CCfld ) ) /\ C e. u ) -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) |
54 |
53
|
ex |
|- ( ( ph /\ u e. ( TopOpen ` CCfld ) ) -> ( C e. u -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
55 |
54
|
ralrimiva |
|- ( ph -> A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) |
56 |
22
|
ffund |
|- ( ph -> Fun F ) |
57 |
|
fdmrn |
|- ( Fun F <-> F : dom F --> ran F ) |
58 |
56 57
|
sylib |
|- ( ph -> F : dom F --> ran F ) |
59 |
1
|
difss2d |
|- ( ph -> ran F C_ dom G ) |
60 |
58 59
|
fssd |
|- ( ph -> F : dom F --> dom G ) |
61 |
|
fco |
|- ( ( G : dom G --> CC /\ F : dom F --> dom G ) -> ( G o. F ) : dom F --> CC ) |
62 |
8 60 61
|
syl2anc |
|- ( ph -> ( G o. F ) : dom F --> CC ) |
63 |
62 23 24 11
|
ellimc2 |
|- ( ph -> ( C e. ( ( G o. F ) limCC A ) <-> ( C e. CC /\ A. u e. ( TopOpen ` CCfld ) ( C e. u -> E. w e. ( TopOpen ` CCfld ) ( A e. w /\ ( ( G o. F ) " ( w i^i ( dom F \ { A } ) ) ) C_ u ) ) ) ) ) |
64 |
5 55 63
|
mpbir2and |
|- ( ph -> C e. ( ( G o. F ) limCC A ) ) |