Metamath Proof Explorer


Theorem limciccioolb

Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limciccioolb.1 φ A
limciccioolb.2 φ B
limciccioolb.3 φ A < B
limciccioolb.4 φ F : A B
Assertion limciccioolb φ F A B lim A = F lim A

Proof

Step Hyp Ref Expression
1 limciccioolb.1 φ A
2 limciccioolb.2 φ B
3 limciccioolb.3 φ A < B
4 limciccioolb.4 φ F : A B
5 ioossicc A B A B
6 5 a1i φ A B A B
7 1 2 iccssred φ A B
8 ax-resscn
9 7 8 sstrdi φ A B
10 eqid TopOpen fld = TopOpen fld
11 eqid TopOpen fld 𝑡 A B A = TopOpen fld 𝑡 A B A
12 retop topGen ran . Top
13 12 a1i φ topGen ran . Top
14 2 rexrd φ B *
15 icossre A B * A B
16 1 14 15 syl2anc φ A B
17 difssd φ A B
18 16 17 unssd φ A B A B
19 uniretop = topGen ran .
20 18 19 sseqtrdi φ A B A B topGen ran .
21 elioore x −∞ B x
22 21 ad2antlr φ x −∞ B A x x
23 simpr φ x −∞ B A x A x
24 simpr φ x −∞ B x −∞ B
25 mnfxr −∞ *
26 25 a1i φ x −∞ B −∞ *
27 14 adantr φ x −∞ B B *
28 elioo2 −∞ * B * x −∞ B x −∞ < x x < B
29 26 27 28 syl2anc φ x −∞ B x −∞ B x −∞ < x x < B
30 24 29 mpbid φ x −∞ B x −∞ < x x < B
31 30 simp3d φ x −∞ B x < B
32 31 adantr φ x −∞ B A x x < B
33 1 ad2antrr φ x −∞ B A x A
34 14 ad2antrr φ x −∞ B A x B *
35 elico2 A B * x A B x A x x < B
36 33 34 35 syl2anc φ x −∞ B A x x A B x A x x < B
37 22 23 32 36 mpbir3and φ x −∞ B A x x A B
38 37 orcd φ x −∞ B A x x A B x A B
39 21 ad2antlr φ x −∞ B ¬ A x x
40 simpr φ x −∞ B ¬ A x ¬ A x
41 40 intnanrd φ x −∞ B ¬ A x ¬ A x x B
42 1 rexrd φ A *
43 42 ad2antrr φ x −∞ B ¬ A x A *
44 14 ad2antrr φ x −∞ B ¬ A x B *
45 39 rexrd φ x −∞ B ¬ A x x *
46 elicc4 A * B * x * x A B A x x B
47 43 44 45 46 syl3anc φ x −∞ B ¬ A x x A B A x x B
48 41 47 mtbird φ x −∞ B ¬ A x ¬ x A B
49 39 48 eldifd φ x −∞ B ¬ A x x A B
50 49 olcd φ x −∞ B ¬ A x x A B x A B
51 38 50 pm2.61dan φ x −∞ B x A B x A B
52 elun x A B A B x A B x A B
53 51 52 sylibr φ x −∞ B x A B A B
54 53 ralrimiva φ x −∞ B x A B A B
55 dfss3 −∞ B A B A B x −∞ B x A B A B
56 54 55 sylibr φ −∞ B A B A B
57 eqid topGen ran . = topGen ran .
58 57 ntrss topGen ran . Top A B A B topGen ran . −∞ B A B A B int topGen ran . −∞ B int topGen ran . A B A B
59 13 20 56 58 syl3anc φ int topGen ran . −∞ B int topGen ran . A B A B
60 25 a1i φ −∞ *
61 1 mnfltd φ −∞ < A
62 60 14 1 61 3 eliood φ A −∞ B
63 iooretop −∞ B topGen ran .
64 63 a1i φ −∞ B topGen ran .
65 isopn3i topGen ran . Top −∞ B topGen ran . int topGen ran . −∞ B = −∞ B
66 13 64 65 syl2anc φ int topGen ran . −∞ B = −∞ B
67 62 66 eleqtrrd φ A int topGen ran . −∞ B
68 59 67 sseldd φ A int topGen ran . A B A B
69 1 leidd φ A A
70 1 2 3 ltled φ A B
71 1 2 1 69 70 eliccd φ A A B
72 68 71 elind φ A int topGen ran . A B A B A B
73 icossicc A B A B
74 73 a1i φ A B A B
75 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
76 19 75 restntr topGen ran . Top A B A B A B int topGen ran . 𝑡 A B A B = int topGen ran . A B A B A B
77 13 7 74 76 syl3anc φ int topGen ran . 𝑡 A B A B = int topGen ran . A B A B A B
78 72 77 eleqtrrd φ A int topGen ran . 𝑡 A B A B
79 eqid topGen ran . = topGen ran .
80 10 79 rerest A B TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
81 7 80 syl φ TopOpen fld 𝑡 A B = topGen ran . 𝑡 A B
82 81 eqcomd φ topGen ran . 𝑡 A B = TopOpen fld 𝑡 A B
83 82 fveq2d φ int topGen ran . 𝑡 A B = int TopOpen fld 𝑡 A B
84 83 fveq1d φ int topGen ran . 𝑡 A B A B = int TopOpen fld 𝑡 A B A B
85 78 84 eleqtrd φ A int TopOpen fld 𝑡 A B A B
86 71 snssd φ A A B
87 ssequn2 A A B A B A = A B
88 86 87 sylib φ A B A = A B
89 88 eqcomd φ A B = A B A
90 89 oveq2d φ TopOpen fld 𝑡 A B = TopOpen fld 𝑡 A B A
91 90 fveq2d φ int TopOpen fld 𝑡 A B = int TopOpen fld 𝑡 A B A
92 uncom A B A = A A B
93 snunioo A * B * A < B A A B = A B
94 42 14 3 93 syl3anc φ A A B = A B
95 92 94 syl5req φ A B = A B A
96 91 95 fveq12d φ int TopOpen fld 𝑡 A B A B = int TopOpen fld 𝑡 A B A A B A
97 85 96 eleqtrd φ A int TopOpen fld 𝑡 A B A A B A
98 4 6 9 10 11 97 limcres φ F A B lim A = F lim A