Step |
Hyp |
Ref |
Expression |
1 |
|
limciccioolb.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
limciccioolb.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
limciccioolb.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
4 |
|
limciccioolb.4 |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
5 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
7 |
1 2
|
iccssred |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
9 |
7 8
|
sstrdi |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
10 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
11 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) |
12 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
14 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
15 |
|
icossre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
16 |
1 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
17 |
|
difssd |
⊢ ( 𝜑 → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ⊆ ℝ ) |
18 |
16 17
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ℝ ) |
19 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
20 |
18 19
|
sseqtrdi |
⊢ ( 𝜑 → ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ) |
21 |
|
elioore |
⊢ ( 𝑥 ∈ ( -∞ (,) 𝐵 ) → 𝑥 ∈ ℝ ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
23 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ≤ 𝑥 ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝑥 ∈ ( -∞ (,) 𝐵 ) ) |
25 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → -∞ ∈ ℝ* ) |
27 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
28 |
|
elioo2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝑥 ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
30 |
24 29
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
31 |
30
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝑥 < 𝐵 ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝑥 < 𝐵 ) |
33 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝐴 ∈ ℝ ) |
34 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝐵 ∈ ℝ* ) |
35 |
|
elico2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
37 |
22 23 32 36
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
38 |
37
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
39 |
21
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ¬ 𝐴 ≤ 𝑥 ) |
41 |
40
|
intnanrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ¬ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
42 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝐴 ∈ ℝ* ) |
44 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝐵 ∈ ℝ* ) |
45 |
39
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) |
46 |
|
elicc4 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
47 |
43 44 45 46
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
48 |
41 47
|
mtbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ¬ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
49 |
39 48
|
eldifd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) |
50 |
49
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) ∧ ¬ 𝐴 ≤ 𝑥 ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
51 |
38 50
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
52 |
|
elun |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ∨ 𝑥 ∈ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
53 |
51 52
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( -∞ (,) 𝐵 ) ) → 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
54 |
53
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( -∞ (,) 𝐵 ) 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
55 |
|
dfss3 |
⊢ ( ( -∞ (,) 𝐵 ) ⊆ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ↔ ∀ 𝑥 ∈ ( -∞ (,) 𝐵 ) 𝑥 ∈ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
56 |
54 55
|
sylibr |
⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ⊆ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) |
57 |
|
eqid |
⊢ ∪ ( topGen ‘ ran (,) ) = ∪ ( topGen ‘ ran (,) ) |
58 |
57
|
ntrss |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ⊆ ∪ ( topGen ‘ ran (,) ) ∧ ( -∞ (,) 𝐵 ) ⊆ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
59 |
13 20 56 58
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) ⊆ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
60 |
25
|
a1i |
⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
61 |
1
|
mnfltd |
⊢ ( 𝜑 → -∞ < 𝐴 ) |
62 |
60 14 1 61 3
|
eliood |
⊢ ( 𝜑 → 𝐴 ∈ ( -∞ (,) 𝐵 ) ) |
63 |
|
iooretop |
⊢ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
64 |
63
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) |
65 |
|
isopn3i |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) = ( -∞ (,) 𝐵 ) ) |
66 |
13 64 65
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) = ( -∞ (,) 𝐵 ) ) |
67 |
62 66
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( -∞ (,) 𝐵 ) ) ) |
68 |
59 67
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ) |
69 |
1
|
leidd |
⊢ ( 𝜑 → 𝐴 ≤ 𝐴 ) |
70 |
1 2 3
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
71 |
1 2 1 69 70
|
eliccd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
72 |
68 71
|
elind |
⊢ ( 𝜑 → 𝐴 ∈ ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
73 |
|
icossicc |
⊢ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
74 |
73
|
a1i |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
75 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
76 |
19 75
|
restntr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
77 |
13 7 74 76
|
syl3anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐴 [,) 𝐵 ) ∪ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
78 |
72 77
|
eleqtrrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
79 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
80 |
10 79
|
rerest |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
81 |
7 80
|
syl |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
82 |
81
|
eqcomd |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) |
83 |
82
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ) |
84 |
83
|
fveq1d |
⊢ ( 𝜑 → ( ( int ‘ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
85 |
78 84
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) ) |
86 |
71
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( 𝐴 [,] 𝐵 ) ) |
87 |
|
ssequn2 |
⊢ ( { 𝐴 } ⊆ ( 𝐴 [,] 𝐵 ) ↔ ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,] 𝐵 ) ) |
88 |
86 87
|
sylib |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,] 𝐵 ) ) |
89 |
88
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) |
90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) |
91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) = ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) ) |
92 |
|
uncom |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) |
93 |
|
snunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
94 |
42 14 3 93
|
syl3anc |
⊢ ( 𝜑 → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
95 |
92 94
|
eqtr2id |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) |
96 |
91 95
|
fveq12d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,] 𝐵 ) ) ) ‘ ( 𝐴 [,) 𝐵 ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
97 |
85 96
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 [,] 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) |
98 |
4 6 9 10 11 97
|
limcres |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 (,) 𝐵 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |