Step |
Hyp |
Ref |
Expression |
1 |
|
restcls.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
restcls.2 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) |
3 |
2
|
fveq2i |
⊢ ( int ‘ 𝐾 ) = ( int ‘ ( 𝐽 ↾t 𝑌 ) ) |
4 |
3
|
fveq1i |
⊢ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) |
5 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
6 |
|
ssexg |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → 𝑌 ∈ V ) |
7 |
6
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
9 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
10 |
8 9
|
syldan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
12 |
1
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 = ∪ ( 𝐽 ↾t 𝑌 ) ) |
13 |
12
|
sseq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → ( 𝑆 ⊆ 𝑌 ↔ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) ) |
14 |
13
|
biimp3a |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) |
15 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ ( 𝐽 ↾t 𝑌 ) |
16 |
15
|
ntropn |
⊢ ( ( ( 𝐽 ↾t 𝑌 ) ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) → ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
17 |
11 14 16
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ ( 𝐽 ↾t 𝑌 ) ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
18 |
4 17
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
19 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐽 ∈ Top ) |
20 |
|
uniexg |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) |
21 |
1 20
|
eqeltrid |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ V ) |
22 |
|
ssexg |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝑌 ∈ V ) |
23 |
21 22
|
sylan2 |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝐽 ∈ Top ) → 𝑌 ∈ V ) |
24 |
23
|
ancoms |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ V ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 ∈ V ) |
26 |
|
elrest |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑜 ∈ 𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) |
27 |
19 25 26
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽 ↾t 𝑌 ) ↔ ∃ 𝑜 ∈ 𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) |
28 |
18 27
|
mpbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ∃ 𝑜 ∈ 𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) |
29 |
1
|
eltopss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
30 |
29
|
sseld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑋 ) ) |
31 |
30
|
adantrr |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑋 ) ) |
32 |
31
|
3ad2antl1 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ 𝑋 ) ) |
33 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ↔ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ 𝑌 ) ) |
34 |
33
|
simplbi2 |
⊢ ( 𝑥 ∈ 𝑋 → ( ¬ 𝑥 ∈ 𝑌 → 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) |
35 |
34
|
orrd |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) |
36 |
32 35
|
syl6 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) ) |
37 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) ↔ ( 𝑥 ∈ 𝑜 ∧ 𝑥 ∈ 𝑌 ) ) |
38 |
|
eleq2 |
⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( 𝑥 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) ) ) |
39 |
|
elun1 |
⊢ ( 𝑥 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
40 |
38 39
|
syl6bir |
⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
41 |
40
|
ad2antll |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ ( 𝑜 ∩ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
42 |
37 41
|
syl5bir |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( 𝑥 ∈ 𝑜 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
43 |
42
|
expdimp |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) ∧ 𝑥 ∈ 𝑜 ) → ( 𝑥 ∈ 𝑌 → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
44 |
|
elun2 |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
45 |
44
|
a1i |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) ∧ 𝑥 ∈ 𝑜 ) → ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
46 |
43 45
|
jaod |
⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) ∧ 𝑥 ∈ 𝑜 ) → ( ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
47 |
46
|
ex |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → ( ( 𝑥 ∈ 𝑌 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) ) |
48 |
36 47
|
mpdd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑥 ∈ 𝑜 → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
49 |
48
|
ssrdv |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝑜 ⊆ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
50 |
11
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝐽 ↾t 𝑌 ) ∈ Top ) |
51 |
2 50
|
eqeltrid |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝐾 ∈ Top ) |
52 |
14
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) |
53 |
2
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( 𝐽 ↾t 𝑌 ) |
54 |
53
|
eqcomi |
⊢ ∪ ( 𝐽 ↾t 𝑌 ) = ∪ 𝐾 |
55 |
54
|
ntrss2 |
⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
56 |
51 52 55
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
57 |
|
unss1 |
⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
58 |
56 57
|
syl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
59 |
49 58
|
sstrd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
60 |
|
simpl1 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝐽 ∈ Top ) |
61 |
|
sstr |
⊢ ( ( 𝑆 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
62 |
61
|
ancoms |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
63 |
62
|
3adant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ 𝑋 ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑆 ⊆ 𝑋 ) |
65 |
|
difss |
⊢ ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 |
66 |
|
unss |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ) ↔ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) |
67 |
64 65 66
|
sylanblc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) |
68 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ∈ 𝐽 ) |
69 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
70 |
1
|
ssntr |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
71 |
60 67 68 69 70
|
syl22anc |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → 𝑜 ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) |
72 |
71
|
ssrind |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → ( 𝑜 ∩ 𝑌 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
73 |
|
sseq1 |
⊢ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ↔ ( 𝑜 ∩ 𝑌 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) |
74 |
72 73
|
syl5ibrcom |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) |
75 |
74
|
expr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) ) |
76 |
75
|
com23 |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) ) |
77 |
76
|
impr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) ) |
78 |
59 77
|
mpd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜 ∩ 𝑌 ) ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
79 |
28 78
|
rexlimddv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |
80 |
2 11
|
eqeltrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝐾 ∈ Top ) |
81 |
8
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → 𝑌 ∈ V ) |
82 |
63 65 66
|
sylanblc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) |
83 |
1
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∈ 𝐽 ) |
84 |
19 82 83
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∈ 𝐽 ) |
85 |
|
elrestr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∈ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
86 |
19 81 84 85
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ ( 𝐽 ↾t 𝑌 ) ) |
87 |
86 2
|
eleqtrrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ 𝐾 ) |
88 |
1
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
89 |
19 82 88
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ⊆ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) |
90 |
89
|
ssrind |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ) |
91 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ) |
92 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ↔ ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ) |
93 |
|
orcom |
⊢ ( ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ∨ 𝑥 ∈ 𝑆 ) ) |
94 |
|
df-or |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ∨ 𝑥 ∈ 𝑆 ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
95 |
93 94
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑆 ∨ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
96 |
92 95
|
bitri |
⊢ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
97 |
96
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∧ 𝑥 ∈ 𝑌 ) ↔ ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) ) |
98 |
91 97
|
bitri |
⊢ ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ↔ ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) ) |
99 |
|
elndif |
⊢ ( 𝑥 ∈ 𝑌 → ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) ) |
100 |
|
pm2.27 |
⊢ ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) |
101 |
99 100
|
syl |
⊢ ( 𝑥 ∈ 𝑌 → ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) ) |
102 |
101
|
impcom |
⊢ ( ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑆 ) |
103 |
102
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( ¬ 𝑥 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑥 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
104 |
98 103
|
syl5bi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) → 𝑥 ∈ 𝑆 ) ) |
105 |
104
|
ssrdv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ∩ 𝑌 ) ⊆ 𝑆 ) |
106 |
90 105
|
sstrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ 𝑆 ) |
107 |
54
|
ssntr |
⊢ ( ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ ∪ ( 𝐽 ↾t 𝑌 ) ) ∧ ( ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ∈ 𝐾 ∧ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ 𝑆 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) |
108 |
80 14 87 106 107
|
syl22anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ) |
109 |
79 108
|
eqssd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋 ∖ 𝑌 ) ) ) ∩ 𝑌 ) ) |