Metamath Proof Explorer


Theorem restntr

Description: An interior in a subspace topology. Willard inGeneral Topology says that there is no analogue of restcls for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypotheses restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = ( 𝐽t 𝑌 )
Assertion restntr ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 restcls.1 𝑋 = 𝐽
2 restcls.2 𝐾 = ( 𝐽t 𝑌 )
3 2 fveq2i ( int ‘ 𝐾 ) = ( int ‘ ( 𝐽t 𝑌 ) )
4 3 fveq1i ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( int ‘ ( 𝐽t 𝑌 ) ) ‘ 𝑆 )
5 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
6 ssexg ( ( 𝑌𝑋𝑋𝐽 ) → 𝑌 ∈ V )
7 6 ancoms ( ( 𝑋𝐽𝑌𝑋 ) → 𝑌 ∈ V )
8 5 7 sylan ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → 𝑌 ∈ V )
9 resttop ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( 𝐽t 𝑌 ) ∈ Top )
10 8 9 syldan ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝐽t 𝑌 ) ∈ Top )
11 10 3adant3 ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( 𝐽t 𝑌 ) ∈ Top )
12 1 restuni ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → 𝑌 = ( 𝐽t 𝑌 ) )
13 12 sseq2d ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → ( 𝑆𝑌𝑆 ( 𝐽t 𝑌 ) ) )
14 13 biimp3a ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → 𝑆 ( 𝐽t 𝑌 ) )
15 eqid ( 𝐽t 𝑌 ) = ( 𝐽t 𝑌 )
16 15 ntropn ( ( ( 𝐽t 𝑌 ) ∈ Top ∧ 𝑆 ( 𝐽t 𝑌 ) ) → ( ( int ‘ ( 𝐽t 𝑌 ) ) ‘ 𝑆 ) ∈ ( 𝐽t 𝑌 ) )
17 11 14 16 syl2anc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ ( 𝐽t 𝑌 ) ) ‘ 𝑆 ) ∈ ( 𝐽t 𝑌 ) )
18 4 17 eqeltrid ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽t 𝑌 ) )
19 simp1 ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → 𝐽 ∈ Top )
20 uniexg ( 𝐽 ∈ Top → 𝐽 ∈ V )
21 1 20 eqeltrid ( 𝐽 ∈ Top → 𝑋 ∈ V )
22 ssexg ( ( 𝑌𝑋𝑋 ∈ V ) → 𝑌 ∈ V )
23 21 22 sylan2 ( ( 𝑌𝑋𝐽 ∈ Top ) → 𝑌 ∈ V )
24 23 ancoms ( ( 𝐽 ∈ Top ∧ 𝑌𝑋 ) → 𝑌 ∈ V )
25 24 3adant3 ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → 𝑌 ∈ V )
26 elrest ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽t 𝑌 ) ↔ ∃ 𝑜𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) )
27 19 25 26 syl2anc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( 𝐽t 𝑌 ) ↔ ∃ 𝑜𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) )
28 18 27 mpbid ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ∃ 𝑜𝐽 ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) )
29 1 eltopss ( ( 𝐽 ∈ Top ∧ 𝑜𝐽 ) → 𝑜𝑋 )
30 29 sseld ( ( 𝐽 ∈ Top ∧ 𝑜𝐽 ) → ( 𝑥𝑜𝑥𝑋 ) )
31 30 adantrr ( ( 𝐽 ∈ Top ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑥𝑜𝑥𝑋 ) )
32 31 3ad2antl1 ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑥𝑜𝑥𝑋 ) )
33 eldif ( 𝑥 ∈ ( 𝑋𝑌 ) ↔ ( 𝑥𝑋 ∧ ¬ 𝑥𝑌 ) )
34 33 simplbi2 ( 𝑥𝑋 → ( ¬ 𝑥𝑌𝑥 ∈ ( 𝑋𝑌 ) ) )
35 34 orrd ( 𝑥𝑋 → ( 𝑥𝑌𝑥 ∈ ( 𝑋𝑌 ) ) )
36 32 35 syl6 ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑥𝑜 → ( 𝑥𝑌𝑥 ∈ ( 𝑋𝑌 ) ) ) )
37 elin ( 𝑥 ∈ ( 𝑜𝑌 ) ↔ ( 𝑥𝑜𝑥𝑌 ) )
38 eleq2 ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) → ( 𝑥 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ↔ 𝑥 ∈ ( 𝑜𝑌 ) ) )
39 elun1 ( 𝑥 ∈ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) )
40 38 39 syl6bir ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) → ( 𝑥 ∈ ( 𝑜𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
41 40 ad2antll ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑥 ∈ ( 𝑜𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
42 37 41 syl5bir ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( ( 𝑥𝑜𝑥𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
43 42 expdimp ( ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) ∧ 𝑥𝑜 ) → ( 𝑥𝑌𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
44 elun2 ( 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) )
45 44 a1i ( ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) ∧ 𝑥𝑜 ) → ( 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
46 43 45 jaod ( ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) ∧ 𝑥𝑜 ) → ( ( 𝑥𝑌𝑥 ∈ ( 𝑋𝑌 ) ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
47 46 ex ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑥𝑜 → ( ( 𝑥𝑌𝑥 ∈ ( 𝑋𝑌 ) ) → 𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) ) )
48 36 47 mpdd ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑥𝑜𝑥 ∈ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ) )
49 48 ssrdv ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → 𝑜 ⊆ ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) )
50 11 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝐽t 𝑌 ) ∈ Top )
51 2 50 eqeltrid ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → 𝐾 ∈ Top )
52 14 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → 𝑆 ( 𝐽t 𝑌 ) )
53 2 unieqi 𝐾 = ( 𝐽t 𝑌 )
54 53 eqcomi ( 𝐽t 𝑌 ) = 𝐾
55 54 ntrss2 ( ( 𝐾 ∈ Top ∧ 𝑆 ( 𝐽t 𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 )
56 51 52 55 syl2anc ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 )
57 unss1 ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝑆 → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) )
58 56 57 syl ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ∪ ( 𝑋𝑌 ) ) ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) )
59 49 58 sstrd ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) )
60 simpl1 ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → 𝐽 ∈ Top )
61 sstr ( ( 𝑆𝑌𝑌𝑋 ) → 𝑆𝑋 )
62 61 ancoms ( ( 𝑌𝑋𝑆𝑌 ) → 𝑆𝑋 )
63 62 3adant1 ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → 𝑆𝑋 )
64 63 adantr ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → 𝑆𝑋 )
65 difss ( 𝑋𝑌 ) ⊆ 𝑋
66 unss ( ( 𝑆𝑋 ∧ ( 𝑋𝑌 ) ⊆ 𝑋 ) ↔ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ⊆ 𝑋 )
67 64 65 66 sylanblc ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → ( 𝑆 ∪ ( 𝑋𝑌 ) ) ⊆ 𝑋 )
68 simprl ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → 𝑜𝐽 )
69 simprr ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) )
70 1 ssntr ( ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ⊆ 𝑋 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → 𝑜 ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) )
71 60 67 68 69 70 syl22anc ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → 𝑜 ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) )
72 71 ssrind ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → ( 𝑜𝑌 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) )
73 sseq1 ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ↔ ( 𝑜𝑌 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ) )
74 72 73 syl5ibrcom ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ) )
75 74 expr ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ 𝑜𝐽 ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ) ) )
76 75 com23 ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ 𝑜𝐽 ) → ( ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ) ) )
77 76 impr ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( 𝑜 ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ) )
78 59 77 mpd ( ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) ∧ ( 𝑜𝐽 ∧ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝑜𝑌 ) ) ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) )
79 28 78 rexlimddv ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) )
80 2 11 eqeltrid ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → 𝐾 ∈ Top )
81 8 3adant3 ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → 𝑌 ∈ V )
82 63 65 66 sylanblc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( 𝑆 ∪ ( 𝑋𝑌 ) ) ⊆ 𝑋 )
83 1 ntropn ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∈ 𝐽 )
84 19 82 83 syl2anc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∈ 𝐽 )
85 elrestr ( ( 𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∈ 𝐽 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ∈ ( 𝐽t 𝑌 ) )
86 19 81 84 85 syl3anc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ∈ ( 𝐽t 𝑌 ) )
87 86 2 eleqtrrdi ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ∈ 𝐾 )
88 1 ntrss2 ( ( 𝐽 ∈ Top ∧ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) )
89 19 82 88 syl2anc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ⊆ ( 𝑆 ∪ ( 𝑋𝑌 ) ) )
90 89 ssrind ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∩ 𝑌 ) )
91 elin ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∩ 𝑌 ) ↔ ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∧ 𝑥𝑌 ) )
92 elun ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ↔ ( 𝑥𝑆𝑥 ∈ ( 𝑋𝑌 ) ) )
93 orcom ( ( 𝑥𝑆𝑥 ∈ ( 𝑋𝑌 ) ) ↔ ( 𝑥 ∈ ( 𝑋𝑌 ) ∨ 𝑥𝑆 ) )
94 df-or ( ( 𝑥 ∈ ( 𝑋𝑌 ) ∨ 𝑥𝑆 ) ↔ ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) )
95 93 94 bitri ( ( 𝑥𝑆𝑥 ∈ ( 𝑋𝑌 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) )
96 92 95 bitri ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) )
97 96 anbi1i ( ( 𝑥 ∈ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∧ 𝑥𝑌 ) ↔ ( ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) ∧ 𝑥𝑌 ) )
98 91 97 bitri ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∩ 𝑌 ) ↔ ( ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) ∧ 𝑥𝑌 ) )
99 elndif ( 𝑥𝑌 → ¬ 𝑥 ∈ ( 𝑋𝑌 ) )
100 pm2.27 ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → ( ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) → 𝑥𝑆 ) )
101 99 100 syl ( 𝑥𝑌 → ( ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) → 𝑥𝑆 ) )
102 101 impcom ( ( ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) ∧ 𝑥𝑌 ) → 𝑥𝑆 )
103 102 a1i ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( ¬ 𝑥 ∈ ( 𝑋𝑌 ) → 𝑥𝑆 ) ∧ 𝑥𝑌 ) → 𝑥𝑆 ) )
104 98 103 syl5bi ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( 𝑥 ∈ ( ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∩ 𝑌 ) → 𝑥𝑆 ) )
105 104 ssrdv ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( 𝑆 ∪ ( 𝑋𝑌 ) ) ∩ 𝑌 ) ⊆ 𝑆 )
106 90 105 sstrd ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ⊆ 𝑆 )
107 54 ssntr ( ( ( 𝐾 ∈ Top ∧ 𝑆 ( 𝐽t 𝑌 ) ) ∧ ( ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ∈ 𝐾 ∧ ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ⊆ 𝑆 ) ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) )
108 80 14 87 106 107 syl22anc ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) ⊆ ( ( int ‘ 𝐾 ) ‘ 𝑆 ) )
109 79 108 eqssd ( ( 𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌 ) → ( ( int ‘ 𝐾 ) ‘ 𝑆 ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑆 ∪ ( 𝑋𝑌 ) ) ) ∩ 𝑌 ) )