Metamath Proof Explorer


Theorem climf

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . Similar to clim , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses climf.nf _ k F
climf.f φ F V
climf.fv φ k F k = B
Assertion climf φ F A A x + j k j B B A < x

Proof

Step Hyp Ref Expression
1 climf.nf _ k F
2 climf.f φ F V
3 climf.fv φ k F k = B
4 climrel Rel
5 4 brrelex2i F A A V
6 5 a1i φ F A A V
7 elex A A V
8 7 adantr A x + j k j F k F k A < x A V
9 8 a1i φ A x + j k j F k F k A < x A V
10 simpr f = F y = A y = A
11 10 eleq1d f = F y = A y A
12 nfv x f = F y = A
13 1 nfeq2 k f = F
14 nfv k y = A
15 13 14 nfan k f = F y = A
16 fveq1 f = F f k = F k
17 16 adantr f = F y = A f k = F k
18 17 eleq1d f = F y = A f k F k
19 oveq12 f k = F k y = A f k y = F k A
20 16 19 sylan f = F y = A f k y = F k A
21 20 fveq2d f = F y = A f k y = F k A
22 21 breq1d f = F y = A f k y < x F k A < x
23 18 22 anbi12d f = F y = A f k f k y < x F k F k A < x
24 15 23 ralbid f = F y = A k j f k f k y < x k j F k F k A < x
25 24 rexbidv f = F y = A j k j f k f k y < x j k j F k F k A < x
26 12 25 ralbid f = F y = A x + j k j f k f k y < x x + j k j F k F k A < x
27 11 26 anbi12d f = F y = A y x + j k j f k f k y < x A x + j k j F k F k A < x
28 df-clim = f y | y x + j k j f k f k y < x
29 27 28 brabga F V A V F A A x + j k j F k F k A < x
30 29 ex F V A V F A A x + j k j F k F k A < x
31 2 30 syl φ A V F A A x + j k j F k F k A < x
32 6 9 31 pm5.21ndd φ F A A x + j k j F k F k A < x
33 eluzelz k j k
34 3 eleq1d φ k F k B
35 3 fvoveq1d φ k F k A = B A
36 35 breq1d φ k F k A < x B A < x
37 34 36 anbi12d φ k F k F k A < x B B A < x
38 33 37 sylan2 φ k j F k F k A < x B B A < x
39 38 ralbidva φ k j F k F k A < x k j B B A < x
40 39 rexbidv φ j k j F k F k A < x j k j B B A < x
41 40 ralbidv φ x + j k j F k F k A < x x + j k j B B A < x
42 41 anbi2d φ A x + j k j F k F k A < x A x + j k j B B A < x
43 32 42 bitrd φ F A A x + j k j B B A < x