| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullimcf.f |
|
| 2 |
|
mullimcf.g |
|
| 3 |
|
mullimcf.h |
|
| 4 |
|
mullimcf.b |
|
| 5 |
|
mullimcf.c |
|
| 6 |
|
limccl |
|
| 7 |
6 4
|
sselid |
|
| 8 |
|
limccl |
|
| 9 |
8 5
|
sselid |
|
| 10 |
7 9
|
mulcld |
|
| 11 |
|
simpr |
|
| 12 |
7
|
adantr |
|
| 13 |
9
|
adantr |
|
| 14 |
|
mulcn2 |
|
| 15 |
11 12 13 14
|
syl3anc |
|
| 16 |
1
|
fdmd |
|
| 17 |
|
limcrcl |
|
| 18 |
4 17
|
syl |
|
| 19 |
18
|
simp2d |
|
| 20 |
16 19
|
eqsstrrd |
|
| 21 |
18
|
simp3d |
|
| 22 |
1 20 21
|
ellimc3 |
|
| 23 |
4 22
|
mpbid |
|
| 24 |
23
|
simprd |
|
| 25 |
24
|
r19.21bi |
|
| 26 |
25
|
adantrr |
|
| 27 |
2 20 21
|
ellimc3 |
|
| 28 |
5 27
|
mpbid |
|
| 29 |
28
|
simprd |
|
| 30 |
29
|
r19.21bi |
|
| 31 |
30
|
adantrl |
|
| 32 |
|
reeanv |
|
| 33 |
26 31 32
|
sylanbrc |
|
| 34 |
|
ifcl |
|
| 35 |
34
|
3ad2ant2 |
|
| 36 |
|
nfv |
|
| 37 |
|
nfv |
|
| 38 |
|
nfra1 |
|
| 39 |
|
nfra1 |
|
| 40 |
38 39
|
nfan |
|
| 41 |
36 37 40
|
nf3an |
|
| 42 |
|
simp11l |
|
| 43 |
|
simp1rl |
|
| 44 |
43
|
3ad2ant1 |
|
| 45 |
42 44
|
jca |
|
| 46 |
|
simp12 |
|
| 47 |
|
simp13l |
|
| 48 |
45 46 47
|
jca31 |
|
| 49 |
|
simp1r |
|
| 50 |
|
simp2 |
|
| 51 |
|
simp3l |
|
| 52 |
|
simplll |
|
| 53 |
52
|
3ad2ant1 |
|
| 54 |
|
simp1lr |
|
| 55 |
|
simp3r |
|
| 56 |
|
simp1l |
|
| 57 |
|
simp2 |
|
| 58 |
20
|
sselda |
|
| 59 |
56 57 58
|
syl2anc |
|
| 60 |
56 21
|
syl |
|
| 61 |
59 60
|
subcld |
|
| 62 |
61
|
abscld |
|
| 63 |
|
rpre |
|
| 64 |
63
|
ad2antrl |
|
| 65 |
64
|
3ad2ant1 |
|
| 66 |
|
rpre |
|
| 67 |
66
|
ad2antll |
|
| 68 |
67
|
3ad2ant1 |
|
| 69 |
65 68
|
ifcld |
|
| 70 |
|
simp3 |
|
| 71 |
|
min1 |
|
| 72 |
65 68 71
|
syl2anc |
|
| 73 |
62 69 65 70 72
|
ltletrd |
|
| 74 |
53 54 50 55 73
|
syl211anc |
|
| 75 |
51 74
|
jca |
|
| 76 |
|
rsp |
|
| 77 |
49 50 75 76
|
syl3c |
|
| 78 |
48 77
|
syld3an1 |
|
| 79 |
|
simp1l |
|
| 80 |
79 43
|
jca |
|
| 81 |
|
simp2 |
|
| 82 |
|
simp3r |
|
| 83 |
80 81 82
|
jca31 |
|
| 84 |
|
simp1r |
|
| 85 |
|
simp2 |
|
| 86 |
|
simp3l |
|
| 87 |
|
simplll |
|
| 88 |
87
|
3ad2ant1 |
|
| 89 |
|
simp1lr |
|
| 90 |
|
simp3r |
|
| 91 |
|
min2 |
|
| 92 |
65 68 91
|
syl2anc |
|
| 93 |
62 69 68 70 92
|
ltletrd |
|
| 94 |
88 89 85 90 93
|
syl211anc |
|
| 95 |
86 94
|
jca |
|
| 96 |
|
rsp |
|
| 97 |
84 85 95 96
|
syl3c |
|
| 98 |
83 97
|
syl3an1 |
|
| 99 |
78 98
|
jca |
|
| 100 |
99
|
3exp |
|
| 101 |
41 100
|
ralrimi |
|
| 102 |
|
brimralrspcev |
|
| 103 |
35 101 102
|
syl2anc |
|
| 104 |
103
|
3exp |
|
| 105 |
104
|
rexlimdvv |
|
| 106 |
33 105
|
mpd |
|
| 107 |
106
|
adantlr |
|
| 108 |
107
|
3adant3 |
|
| 109 |
|
nfv |
|
| 110 |
|
nfra1 |
|
| 111 |
109 110
|
nfan |
|
| 112 |
|
simp1l |
|
| 113 |
112
|
ad2antrr |
|
| 114 |
113
|
3ad2ant1 |
|
| 115 |
|
simp2 |
|
| 116 |
|
fveq2 |
|
| 117 |
|
fveq2 |
|
| 118 |
116 117
|
oveq12d |
|
| 119 |
|
simpr |
|
| 120 |
1
|
ffvelcdmda |
|
| 121 |
2
|
ffvelcdmda |
|
| 122 |
120 121
|
mulcld |
|
| 123 |
3 118 119 122
|
fvmptd3 |
|
| 124 |
123
|
fvoveq1d |
|
| 125 |
114 115 124
|
syl2anc |
|
| 126 |
120 121
|
jca |
|
| 127 |
114 115 126
|
syl2anc |
|
| 128 |
|
simpll3 |
|
| 129 |
128
|
3ad2ant1 |
|
| 130 |
|
rsp |
|
| 131 |
130
|
3imp |
|
| 132 |
131
|
3adant1l |
|
| 133 |
|
fvoveq1 |
|
| 134 |
133
|
breq1d |
|
| 135 |
134
|
anbi1d |
|
| 136 |
|
oveq1 |
|
| 137 |
136
|
fvoveq1d |
|
| 138 |
137
|
breq1d |
|
| 139 |
135 138
|
imbi12d |
|
| 140 |
|
fvoveq1 |
|
| 141 |
140
|
breq1d |
|
| 142 |
141
|
anbi2d |
|
| 143 |
|
oveq2 |
|
| 144 |
143
|
fvoveq1d |
|
| 145 |
144
|
breq1d |
|
| 146 |
142 145
|
imbi12d |
|
| 147 |
139 146
|
rspc2v |
|
| 148 |
127 129 132 147
|
syl3c |
|
| 149 |
125 148
|
eqbrtrd |
|
| 150 |
149
|
3exp |
|
| 151 |
111 150
|
ralrimi |
|
| 152 |
151
|
ex |
|
| 153 |
152
|
reximdva |
|
| 154 |
108 153
|
mpd |
|
| 155 |
154
|
3exp |
|
| 156 |
155
|
rexlimdvv |
|
| 157 |
15 156
|
mpd |
|
| 158 |
157
|
ralrimiva |
|
| 159 |
1
|
ffvelcdmda |
|
| 160 |
2
|
ffvelcdmda |
|
| 161 |
159 160
|
mulcld |
|
| 162 |
161 3
|
fmptd |
|
| 163 |
162 20 21
|
ellimc3 |
|
| 164 |
10 158 163
|
mpbir2and |
|