Metamath Proof Explorer


Theorem limcdm0

Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcdm0.f ( 𝜑𝐹 : ∅ ⟶ ℂ )
limcdm0.b ( 𝜑𝐵 ∈ ℂ )
Assertion limcdm0 ( 𝜑 → ( 𝐹 lim 𝐵 ) = ℂ )

Proof

Step Hyp Ref Expression
1 limcdm0.f ( 𝜑𝐹 : ∅ ⟶ ℂ )
2 limcdm0.b ( 𝜑𝐵 ∈ ℂ )
3 limccl ( 𝐹 lim 𝐵 ) ⊆ ℂ
4 3 sseli ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) → 𝑥 ∈ ℂ )
5 4 adantl ( ( 𝜑𝑥 ∈ ( 𝐹 lim 𝐵 ) ) → 𝑥 ∈ ℂ )
6 simpr ( ( 𝜑𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
7 1rp 1 ∈ ℝ+
8 ral0 𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 )
9 brimralrspcev ( ( 1 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 ) ) → ∃ 𝑤 ∈ ℝ+𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 ) )
10 7 8 9 mp2an 𝑤 ∈ ℝ+𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 )
11 10 rgenw 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 )
12 11 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 ) )
13 1 adantr ( ( 𝜑𝑥 ∈ ℂ ) → 𝐹 : ∅ ⟶ ℂ )
14 0ss ∅ ⊆ ℂ
15 14 a1i ( ( 𝜑𝑥 ∈ ℂ ) → ∅ ⊆ ℂ )
16 2 adantr ( ( 𝜑𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ )
17 13 15 16 ellimc3 ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑧 ∈ ∅ ( ( 𝑧𝐵 ∧ ( abs ‘ ( 𝑧𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹𝑧 ) − 𝑥 ) ) < 𝑦 ) ) ) )
18 6 12 17 mpbir2and ( ( 𝜑𝑥 ∈ ℂ ) → 𝑥 ∈ ( 𝐹 lim 𝐵 ) )
19 5 18 impbida ( 𝜑 → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ 𝑥 ∈ ℂ ) )
20 19 eqrdv ( 𝜑 → ( 𝐹 lim 𝐵 ) = ℂ )