| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcdm0.f |
⊢ ( 𝜑 → 𝐹 : ∅ ⟶ ℂ ) |
| 2 |
|
limcdm0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
| 4 |
3
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
| 7 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 8 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
| 9 |
|
brimralrspcev |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) |
| 10 |
7 8 9
|
mp2an |
⊢ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
| 11 |
10
|
rgenw |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐹 : ∅ ⟶ ℂ ) |
| 14 |
|
0ss |
⊢ ∅ ⊆ ℂ |
| 15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∅ ⊆ ℂ ) |
| 16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 17 |
13 15 16
|
ellimc3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) ) ) |
| 18 |
6 12 17
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 19 |
5 18
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ℂ ) ) |
| 20 |
19
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |