Step |
Hyp |
Ref |
Expression |
1 |
|
limcdm0.f |
⊢ ( 𝜑 → 𝐹 : ∅ ⟶ ℂ ) |
2 |
|
limcdm0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
4 |
3
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝑥 ∈ ℂ ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
7 |
|
1rp |
⊢ 1 ∈ ℝ+ |
8 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
9 |
|
brimralrspcev |
⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) |
10 |
7 8 9
|
mp2an |
⊢ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
11 |
10
|
rgenw |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐹 : ∅ ⟶ ℂ ) |
14 |
|
0ss |
⊢ ∅ ⊆ ℂ |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∅ ⊆ ℂ ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
17 |
13 15 16
|
ellimc3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) ) ) |
18 |
6 12 17
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
19 |
5 18
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ℂ ) ) |
20 |
19
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |