| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ellimcdiv.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
0ellimcdiv.g |
|- G = ( x e. A |-> C ) |
| 3 |
|
0ellimcdiv.h |
|- H = ( x e. A |-> ( B / C ) ) |
| 4 |
|
0ellimcdiv.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 5 |
|
0ellimcdiv.c |
|- ( ( ph /\ x e. A ) -> C e. ( CC \ { 0 } ) ) |
| 6 |
|
0ellimcdiv.0limf |
|- ( ph -> 0 e. ( F limCC E ) ) |
| 7 |
|
0ellimcdiv.d |
|- ( ph -> D e. ( G limCC E ) ) |
| 8 |
|
0ellimcdiv.dne0 |
|- ( ph -> D =/= 0 ) |
| 9 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 10 |
5
|
eldifad |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 11 |
10 2
|
fmptd |
|- ( ph -> G : A --> CC ) |
| 12 |
1 4 6
|
limcmptdm |
|- ( ph -> A C_ CC ) |
| 13 |
|
limcrcl |
|- ( D e. ( G limCC E ) -> ( G : dom G --> CC /\ dom G C_ CC /\ E e. CC ) ) |
| 14 |
7 13
|
syl |
|- ( ph -> ( G : dom G --> CC /\ dom G C_ CC /\ E e. CC ) ) |
| 15 |
14
|
simp3d |
|- ( ph -> E e. CC ) |
| 16 |
11 12 15
|
ellimc3 |
|- ( ph -> ( D e. ( G limCC E ) <-> ( D e. CC /\ A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) ) ) ) |
| 17 |
7 16
|
mpbid |
|- ( ph -> ( D e. CC /\ A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) ) ) |
| 18 |
17
|
simprd |
|- ( ph -> A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) ) |
| 19 |
17
|
simpld |
|- ( ph -> D e. CC ) |
| 20 |
19 8
|
absrpcld |
|- ( ph -> ( abs ` D ) e. RR+ ) |
| 21 |
20
|
rphalfcld |
|- ( ph -> ( ( abs ` D ) / 2 ) e. RR+ ) |
| 22 |
|
breq2 |
|- ( y = ( ( abs ` D ) / 2 ) -> ( ( abs ` ( ( G ` v ) - D ) ) < y <-> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) |
| 23 |
22
|
imbi2d |
|- ( y = ( ( abs ` D ) / 2 ) -> ( ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) <-> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) ) |
| 24 |
23
|
rexralbidv |
|- ( y = ( ( abs ` D ) / 2 ) -> ( E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) <-> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) ) |
| 25 |
24
|
rspccva |
|- ( ( A. y e. RR+ E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < y ) /\ ( ( abs ` D ) / 2 ) e. RR+ ) -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) |
| 26 |
18 21 25
|
syl2anc |
|- ( ph -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) |
| 27 |
|
simpl1l |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ph ) |
| 28 |
|
simpl3 |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> v e. A ) |
| 29 |
|
simpr |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) |
| 30 |
|
simpl2 |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) ) |
| 31 |
28 29 30
|
mp2d |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) |
| 32 |
20
|
rpcnd |
|- ( ph -> ( abs ` D ) e. CC ) |
| 33 |
32
|
2halvesd |
|- ( ph -> ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) = ( abs ` D ) ) |
| 34 |
33
|
eqcomd |
|- ( ph -> ( abs ` D ) = ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) ) |
| 35 |
34
|
oveq1d |
|- ( ph -> ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) = ( ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) - ( ( abs ` D ) / 2 ) ) ) |
| 36 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 37 |
|
2ne0 |
|- 2 =/= 0 |
| 38 |
37
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 39 |
19 36 38
|
absdivd |
|- ( ph -> ( abs ` ( D / 2 ) ) = ( ( abs ` D ) / ( abs ` 2 ) ) ) |
| 40 |
|
2re |
|- 2 e. RR |
| 41 |
40
|
a1i |
|- ( ph -> 2 e. RR ) |
| 42 |
|
0le2 |
|- 0 <_ 2 |
| 43 |
42
|
a1i |
|- ( ph -> 0 <_ 2 ) |
| 44 |
41 43
|
absidd |
|- ( ph -> ( abs ` 2 ) = 2 ) |
| 45 |
44
|
oveq2d |
|- ( ph -> ( ( abs ` D ) / ( abs ` 2 ) ) = ( ( abs ` D ) / 2 ) ) |
| 46 |
39 45
|
eqtr2d |
|- ( ph -> ( ( abs ` D ) / 2 ) = ( abs ` ( D / 2 ) ) ) |
| 47 |
46
|
oveq2d |
|- ( ph -> ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) = ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) ) |
| 48 |
21
|
rpcnd |
|- ( ph -> ( ( abs ` D ) / 2 ) e. CC ) |
| 49 |
48 48
|
pncand |
|- ( ph -> ( ( ( ( abs ` D ) / 2 ) + ( ( abs ` D ) / 2 ) ) - ( ( abs ` D ) / 2 ) ) = ( ( abs ` D ) / 2 ) ) |
| 50 |
35 47 49
|
3eqtr3rd |
|- ( ph -> ( ( abs ` D ) / 2 ) = ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) ) |
| 51 |
50
|
3ad2ant1 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) / 2 ) = ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) ) |
| 52 |
46
|
eqcomd |
|- ( ph -> ( abs ` ( D / 2 ) ) = ( ( abs ` D ) / 2 ) ) |
| 53 |
52
|
3ad2ant1 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D / 2 ) ) = ( ( abs ` D ) / 2 ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) = ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) ) |
| 55 |
19
|
adantr |
|- ( ( ph /\ v e. A ) -> D e. CC ) |
| 56 |
55
|
abscld |
|- ( ( ph /\ v e. A ) -> ( abs ` D ) e. RR ) |
| 57 |
56
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` D ) e. RR ) |
| 58 |
11
|
ffvelcdmda |
|- ( ( ph /\ v e. A ) -> ( G ` v ) e. CC ) |
| 59 |
58
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( G ` v ) e. CC ) |
| 60 |
59
|
abscld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( G ` v ) ) e. RR ) |
| 61 |
19
|
3ad2ant1 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> D e. CC ) |
| 62 |
61 59
|
subcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( D - ( G ` v ) ) e. CC ) |
| 63 |
62
|
abscld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D - ( G ` v ) ) ) e. RR ) |
| 64 |
60 63
|
readdcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) e. RR ) |
| 65 |
57
|
rehalfcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) / 2 ) e. RR ) |
| 66 |
60 65
|
readdcld |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) e. RR ) |
| 67 |
58 55
|
pncan3d |
|- ( ( ph /\ v e. A ) -> ( ( G ` v ) + ( D - ( G ` v ) ) ) = D ) |
| 68 |
67
|
eqcomd |
|- ( ( ph /\ v e. A ) -> D = ( ( G ` v ) + ( D - ( G ` v ) ) ) ) |
| 69 |
68
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` D ) = ( abs ` ( ( G ` v ) + ( D - ( G ` v ) ) ) ) ) |
| 70 |
55 58
|
subcld |
|- ( ( ph /\ v e. A ) -> ( D - ( G ` v ) ) e. CC ) |
| 71 |
58 70
|
abstrid |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( G ` v ) + ( D - ( G ` v ) ) ) ) <_ ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) ) |
| 72 |
69 71
|
eqbrtrd |
|- ( ( ph /\ v e. A ) -> ( abs ` D ) <_ ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) ) |
| 73 |
72
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` D ) <_ ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) ) |
| 74 |
61 59
|
abssubd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D - ( G ` v ) ) ) = ( abs ` ( ( G ` v ) - D ) ) ) |
| 75 |
|
simp3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) |
| 76 |
74 75
|
eqbrtrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( D - ( G ` v ) ) ) < ( ( abs ` D ) / 2 ) ) |
| 77 |
63 65 60 76
|
ltadd2dd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( G ` v ) ) + ( abs ` ( D - ( G ` v ) ) ) ) < ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) ) |
| 78 |
57 64 66 73 77
|
lelttrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` D ) < ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) ) |
| 79 |
58
|
abscld |
|- ( ( ph /\ v e. A ) -> ( abs ` ( G ` v ) ) e. RR ) |
| 80 |
79
|
3adant3 |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( abs ` ( G ` v ) ) e. RR ) |
| 81 |
57 65 80
|
ltsubaddd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) < ( abs ` ( G ` v ) ) <-> ( abs ` D ) < ( ( abs ` ( G ` v ) ) + ( ( abs ` D ) / 2 ) ) ) ) |
| 82 |
78 81
|
mpbird |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) - ( ( abs ` D ) / 2 ) ) < ( abs ` ( G ` v ) ) ) |
| 83 |
54 82
|
eqbrtrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) - ( abs ` ( D / 2 ) ) ) < ( abs ` ( G ` v ) ) ) |
| 84 |
51 83
|
eqbrtrd |
|- ( ( ph /\ v e. A /\ ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
| 85 |
27 28 31 84
|
syl3anc |
|- ( ( ( ( ph /\ z e. RR+ ) /\ ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < z ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
| 86 |
85
|
3exp1 |
|- ( ( ph /\ z e. RR+ ) -> ( ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) ) -> ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) ) ) |
| 87 |
86
|
ralimdv2 |
|- ( ( ph /\ z e. RR+ ) -> ( A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) ) |
| 88 |
87
|
reximdva |
|- ( ph -> ( E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( abs ` ( ( G ` v ) - D ) ) < ( ( abs ` D ) / 2 ) ) -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) ) |
| 89 |
26 88
|
mpd |
|- ( ph -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
| 90 |
89
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
| 91 |
|
simpr |
|- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
| 92 |
19
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> D e. CC ) |
| 93 |
8
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> D =/= 0 ) |
| 94 |
92 93
|
absrpcld |
|- ( ( ph /\ y e. RR+ ) -> ( abs ` D ) e. RR+ ) |
| 95 |
94
|
rphalfcld |
|- ( ( ph /\ y e. RR+ ) -> ( ( abs ` D ) / 2 ) e. RR+ ) |
| 96 |
91 95
|
rpmulcld |
|- ( ( ph /\ y e. RR+ ) -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) |
| 97 |
96
|
ex |
|- ( ph -> ( y e. RR+ -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) |
| 98 |
97
|
imdistani |
|- ( ( ph /\ y e. RR+ ) -> ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) |
| 99 |
|
eleq1 |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( w e. RR+ <-> ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) |
| 100 |
99
|
anbi2d |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( ph /\ w e. RR+ ) <-> ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) ) ) |
| 101 |
|
breq2 |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( abs ` ( ( F ` v ) - 0 ) ) < w <-> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 102 |
101
|
imbi2d |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) <-> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) |
| 103 |
102
|
rexralbidv |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) <-> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) |
| 104 |
100 103
|
imbi12d |
|- ( w = ( y x. ( ( abs ` D ) / 2 ) ) -> ( ( ( ph /\ w e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) <-> ( ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) ) |
| 105 |
4 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
| 106 |
105 12 15
|
ellimc3 |
|- ( ph -> ( 0 e. ( F limCC E ) <-> ( 0 e. CC /\ A. w e. RR+ E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) ) ) |
| 107 |
6 106
|
mpbid |
|- ( ph -> ( 0 e. CC /\ A. w e. RR+ E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) ) |
| 108 |
107
|
simprd |
|- ( ph -> A. w e. RR+ E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) |
| 109 |
108
|
r19.21bi |
|- ( ( ph /\ w e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < w ) ) |
| 110 |
104 109
|
vtoclg |
|- ( ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ -> ( ( ph /\ ( y x. ( ( abs ` D ) / 2 ) ) e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) ) |
| 111 |
96 98 110
|
sylc |
|- ( ( ph /\ y e. RR+ ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 112 |
111
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 113 |
|
simp12 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> z e. RR+ ) |
| 114 |
|
simp2 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> u e. RR+ ) |
| 115 |
113 114
|
ifcld |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> if ( z <_ u , z , u ) e. RR+ ) |
| 116 |
|
nfv |
|- F/ v ( ph /\ y e. RR+ ) |
| 117 |
|
nfv |
|- F/ v z e. RR+ |
| 118 |
|
nfra1 |
|- F/ v A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
| 119 |
116 117 118
|
nf3an |
|- F/ v ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
| 120 |
|
nfv |
|- F/ v u e. RR+ |
| 121 |
|
nfra1 |
|- F/ v A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
| 122 |
119 120 121
|
nf3an |
|- F/ v ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 123 |
|
simp111 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ph /\ y e. RR+ ) ) |
| 124 |
|
simp112 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> z e. RR+ ) |
| 125 |
|
simp12 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> u e. RR+ ) |
| 126 |
123 124 125
|
jca31 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) ) |
| 127 |
|
simp2 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> v e. A ) |
| 128 |
|
simp3l |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> v =/= E ) |
| 129 |
126 127 128
|
jca31 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) ) |
| 130 |
12
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> A C_ CC ) |
| 131 |
130
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> A C_ CC ) |
| 132 |
131
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> A C_ CC ) |
| 133 |
132
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> A C_ CC ) |
| 134 |
133 127
|
sseldd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> v e. CC ) |
| 135 |
15
|
adantr |
|- ( ( ph /\ y e. RR+ ) -> E e. CC ) |
| 136 |
135
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> E e. CC ) |
| 137 |
136
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> E e. CC ) |
| 138 |
137
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> E e. CC ) |
| 139 |
134 138
|
subcld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( v - E ) e. CC ) |
| 140 |
139
|
abscld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) e. RR ) |
| 141 |
124
|
rpred |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> z e. RR ) |
| 142 |
125
|
rpred |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> u e. RR ) |
| 143 |
141 142
|
ifcld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> if ( z <_ u , z , u ) e. RR ) |
| 144 |
|
simp3r |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) |
| 145 |
|
min1 |
|- ( ( z e. RR /\ u e. RR ) -> if ( z <_ u , z , u ) <_ z ) |
| 146 |
141 142 145
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> if ( z <_ u , z , u ) <_ z ) |
| 147 |
140 143 141 144 146
|
ltletrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) < z ) |
| 148 |
|
simp113 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
| 149 |
|
rspa |
|- ( ( A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ v e. A ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
| 150 |
148 127 149
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) |
| 151 |
128 147 150
|
mp2and |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
| 152 |
|
simp13 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 153 |
|
rspa |
|- ( ( A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ v e. A ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 154 |
152 127 153
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 155 |
|
min2 |
|- ( ( z e. RR /\ u e. RR ) -> if ( z <_ u , z , u ) <_ u ) |
| 156 |
141 142 155
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> if ( z <_ u , z , u ) <_ u ) |
| 157 |
140 143 142 144 156
|
ltletrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( v - E ) ) < u ) |
| 158 |
128 157
|
jca |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) |
| 159 |
123
|
simpld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ph ) |
| 160 |
159
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ph ) |
| 161 |
|
simp12 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> v e. A ) |
| 162 |
|
nfv |
|- F/ x ( ph /\ v e. A ) |
| 163 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
| 164 |
1 163
|
nfcxfr |
|- F/_ x F |
| 165 |
|
nfcv |
|- F/_ x v |
| 166 |
164 165
|
nffv |
|- F/_ x ( F ` v ) |
| 167 |
166
|
nfel1 |
|- F/ x ( F ` v ) e. CC |
| 168 |
162 167
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) |
| 169 |
|
eleq1 |
|- ( x = v -> ( x e. A <-> v e. A ) ) |
| 170 |
169
|
anbi2d |
|- ( x = v -> ( ( ph /\ x e. A ) <-> ( ph /\ v e. A ) ) ) |
| 171 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
| 172 |
171
|
eleq1d |
|- ( x = v -> ( ( F ` x ) e. CC <-> ( F ` v ) e. CC ) ) |
| 173 |
170 172
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) <-> ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) ) ) |
| 174 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
| 175 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B ) |
| 176 |
174 4 175
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 177 |
176 4
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
| 178 |
168 173 177
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) |
| 179 |
178
|
subid1d |
|- ( ( ph /\ v e. A ) -> ( ( F ` v ) - 0 ) = ( F ` v ) ) |
| 180 |
179
|
eqcomd |
|- ( ( ph /\ v e. A ) -> ( F ` v ) = ( ( F ` v ) - 0 ) ) |
| 181 |
180
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( F ` v ) ) = ( abs ` ( ( F ` v ) - 0 ) ) ) |
| 182 |
160 161 181
|
syl2anc |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( abs ` ( F ` v ) ) = ( abs ` ( ( F ` v ) - 0 ) ) ) |
| 183 |
|
simp3 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) |
| 184 |
|
simp2 |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) |
| 185 |
183 184
|
mpd |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
| 186 |
182 185
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) /\ ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) /\ ( v =/= E /\ ( abs ` ( v - E ) ) < u ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
| 187 |
154 158 186
|
mpd3an23 |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
| 188 |
|
simp-7l |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ph ) |
| 189 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> v e. A ) |
| 190 |
|
eldifsni |
|- ( C e. ( CC \ { 0 } ) -> C =/= 0 ) |
| 191 |
5 190
|
syl |
|- ( ( ph /\ x e. A ) -> C =/= 0 ) |
| 192 |
4 10 191
|
divcld |
|- ( ( ph /\ x e. A ) -> ( B / C ) e. CC ) |
| 193 |
192 3
|
fmptd |
|- ( ph -> H : A --> CC ) |
| 194 |
193
|
ffvelcdmda |
|- ( ( ph /\ v e. A ) -> ( H ` v ) e. CC ) |
| 195 |
194
|
subid1d |
|- ( ( ph /\ v e. A ) -> ( ( H ` v ) - 0 ) = ( H ` v ) ) |
| 196 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> ( B / C ) ) |
| 197 |
3 196
|
nfcxfr |
|- F/_ x H |
| 198 |
197 165
|
nffv |
|- F/_ x ( H ` v ) |
| 199 |
|
nfcv |
|- F/_ x / |
| 200 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> C ) |
| 201 |
2 200
|
nfcxfr |
|- F/_ x G |
| 202 |
201 165
|
nffv |
|- F/_ x ( G ` v ) |
| 203 |
166 199 202
|
nfov |
|- F/_ x ( ( F ` v ) / ( G ` v ) ) |
| 204 |
198 203
|
nfeq |
|- F/ x ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) |
| 205 |
162 204
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) |
| 206 |
|
fveq2 |
|- ( x = v -> ( H ` x ) = ( H ` v ) ) |
| 207 |
|
fveq2 |
|- ( x = v -> ( G ` x ) = ( G ` v ) ) |
| 208 |
171 207
|
oveq12d |
|- ( x = v -> ( ( F ` x ) / ( G ` x ) ) = ( ( F ` v ) / ( G ` v ) ) ) |
| 209 |
206 208
|
eqeq12d |
|- ( x = v -> ( ( H ` x ) = ( ( F ` x ) / ( G ` x ) ) <-> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) ) |
| 210 |
170 209
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) / ( G ` x ) ) ) <-> ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) ) ) |
| 211 |
3
|
fvmpt2 |
|- ( ( x e. A /\ ( B / C ) e. CC ) -> ( H ` x ) = ( B / C ) ) |
| 212 |
174 192 211
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( B / C ) ) |
| 213 |
176
|
eqcomd |
|- ( ( ph /\ x e. A ) -> B = ( F ` x ) ) |
| 214 |
2
|
fvmpt2 |
|- ( ( x e. A /\ C e. ( CC \ { 0 } ) ) -> ( G ` x ) = C ) |
| 215 |
174 5 214
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
| 216 |
215
|
eqcomd |
|- ( ( ph /\ x e. A ) -> C = ( G ` x ) ) |
| 217 |
213 216
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( B / C ) = ( ( F ` x ) / ( G ` x ) ) ) |
| 218 |
212 217
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) / ( G ` x ) ) ) |
| 219 |
205 210 218
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) / ( G ` v ) ) ) |
| 220 |
195 219
|
eqtrd |
|- ( ( ph /\ v e. A ) -> ( ( H ` v ) - 0 ) = ( ( F ` v ) / ( G ` v ) ) ) |
| 221 |
220
|
fveq2d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( H ` v ) - 0 ) ) = ( abs ` ( ( F ` v ) / ( G ` v ) ) ) ) |
| 222 |
188 189 221
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) = ( abs ` ( ( F ` v ) / ( G ` v ) ) ) ) |
| 223 |
|
simp-6l |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ph /\ y e. RR+ ) ) |
| 224 |
223 189
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( ph /\ y e. RR+ ) /\ v e. A ) ) |
| 225 |
|
simplr |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
| 226 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
| 227 |
|
nfcv |
|- F/_ x 0 |
| 228 |
202 227
|
nfne |
|- F/ x ( G ` v ) =/= 0 |
| 229 |
162 228
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( G ` v ) =/= 0 ) |
| 230 |
207
|
neeq1d |
|- ( x = v -> ( ( G ` x ) =/= 0 <-> ( G ` v ) =/= 0 ) ) |
| 231 |
170 230
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( G ` x ) =/= 0 ) <-> ( ( ph /\ v e. A ) -> ( G ` v ) =/= 0 ) ) ) |
| 232 |
215 191
|
eqnetrd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) =/= 0 ) |
| 233 |
229 231 232
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( G ` v ) =/= 0 ) |
| 234 |
178 58 233
|
absdivd |
|- ( ( ph /\ v e. A ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) = ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) ) |
| 235 |
234
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) = ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) ) |
| 236 |
235
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) = ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) ) |
| 237 |
178
|
abscld |
|- ( ( ph /\ v e. A ) -> ( abs ` ( F ` v ) ) e. RR ) |
| 238 |
58 233
|
absne0d |
|- ( ( ph /\ v e. A ) -> ( abs ` ( G ` v ) ) =/= 0 ) |
| 239 |
237 79 238
|
redivcld |
|- ( ( ph /\ v e. A ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
| 240 |
239
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
| 241 |
240
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
| 242 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
| 243 |
242
|
ad2antlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> y e. RR ) |
| 244 |
21
|
rpred |
|- ( ph -> ( ( abs ` D ) / 2 ) e. RR ) |
| 245 |
244
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( abs ` D ) / 2 ) e. RR ) |
| 246 |
243 245
|
remulcld |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR ) |
| 247 |
246
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( y x. ( ( abs ` D ) / 2 ) ) e. RR ) |
| 248 |
58 233
|
absrpcld |
|- ( ( ph /\ v e. A ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
| 249 |
248
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
| 250 |
249
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
| 251 |
247 250
|
rerpdivcld |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) e. RR ) |
| 252 |
243
|
ad2antrr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> y e. RR ) |
| 253 |
|
simp-4l |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ph ) |
| 254 |
|
simpllr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> v e. A ) |
| 255 |
253 254 237
|
syl2anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( F ` v ) ) e. RR ) |
| 256 |
|
simpr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) |
| 257 |
255 247 250 256
|
ltdiv1dd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) < ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) ) |
| 258 |
243
|
recnd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> y e. CC ) |
| 259 |
48
|
ad2antrr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( abs ` D ) / 2 ) e. CC ) |
| 260 |
249
|
rpcnd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( G ` v ) ) e. CC ) |
| 261 |
238
|
adantlr |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( abs ` ( G ` v ) ) =/= 0 ) |
| 262 |
258 259 260 261
|
divassd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) = ( y x. ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) ) ) |
| 263 |
262
|
adantr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) = ( y x. ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) ) ) |
| 264 |
245 249
|
rerpdivcld |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) e. RR ) |
| 265 |
264
|
adantr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) e. RR ) |
| 266 |
|
1red |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> 1 e. RR ) |
| 267 |
|
simpllr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> y e. RR+ ) |
| 268 |
244
|
ad2antrr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( abs ` D ) / 2 ) e. RR ) |
| 269 |
|
1rp |
|- 1 e. RR+ |
| 270 |
269
|
a1i |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> 1 e. RR+ ) |
| 271 |
248
|
adantr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( abs ` ( G ` v ) ) e. RR+ ) |
| 272 |
48
|
div1d |
|- ( ph -> ( ( ( abs ` D ) / 2 ) / 1 ) = ( ( abs ` D ) / 2 ) ) |
| 273 |
272
|
ad2antrr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / 1 ) = ( ( abs ` D ) / 2 ) ) |
| 274 |
|
simpr |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) |
| 275 |
273 274
|
eqbrtrd |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / 1 ) < ( abs ` ( G ` v ) ) ) |
| 276 |
268 270 271 275
|
ltdiv23d |
|- ( ( ( ph /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) < 1 ) |
| 277 |
276
|
adantllr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) < 1 ) |
| 278 |
265 266 267 277
|
ltmul2dd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( y x. ( ( ( abs ` D ) / 2 ) / ( abs ` ( G ` v ) ) ) ) < ( y x. 1 ) ) |
| 279 |
263 278
|
eqbrtrd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) < ( y x. 1 ) ) |
| 280 |
258
|
mulridd |
|- ( ( ( ph /\ y e. RR+ ) /\ v e. A ) -> ( y x. 1 ) = y ) |
| 281 |
280
|
adantr |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( y x. 1 ) = y ) |
| 282 |
279 281
|
breqtrd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) < y ) |
| 283 |
282
|
adantr |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( y x. ( ( abs ` D ) / 2 ) ) / ( abs ` ( G ` v ) ) ) < y ) |
| 284 |
241 251 252 257 283
|
lttrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( ( abs ` ( F ` v ) ) / ( abs ` ( G ` v ) ) ) < y ) |
| 285 |
236 284
|
eqbrtrd |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ v e. A ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) < y ) |
| 286 |
224 225 226 285
|
syl21anc |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( F ` v ) / ( G ` v ) ) ) < y ) |
| 287 |
222 286
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ ) /\ u e. RR+ ) /\ v e. A ) /\ v =/= E ) /\ ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) /\ ( abs ` ( F ` v ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) |
| 288 |
129 151 187 287
|
syl21anc |
|- ( ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) /\ v e. A /\ ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) |
| 289 |
288
|
3exp |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> ( v e. A -> ( ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) |
| 290 |
122 289
|
ralrimi |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
| 291 |
|
brimralrspcev |
|- ( ( if ( z <_ u , z , u ) e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < if ( z <_ u , z , u ) ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
| 292 |
115 290 291
|
syl2anc |
|- ( ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) /\ u e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
| 293 |
292
|
rexlimdv3a |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> ( E. u e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < u ) -> ( abs ` ( ( F ` v ) - 0 ) ) < ( y x. ( ( abs ` D ) / 2 ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) |
| 294 |
112 293
|
mpd |
|- ( ( ( ph /\ y e. RR+ ) /\ z e. RR+ /\ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
| 295 |
294
|
rexlimdv3a |
|- ( ( ph /\ y e. RR+ ) -> ( E. z e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < z ) -> ( ( abs ` D ) / 2 ) < ( abs ` ( G ` v ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) |
| 296 |
90 295
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
| 297 |
296
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) |
| 298 |
193 12 15
|
ellimc3 |
|- ( ph -> ( 0 e. ( H limCC E ) <-> ( 0 e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= E /\ ( abs ` ( v - E ) ) < w ) -> ( abs ` ( ( H ` v ) - 0 ) ) < y ) ) ) ) |
| 299 |
9 297 298
|
mpbir2and |
|- ( ph -> 0 e. ( H limCC E ) ) |