| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim0cf.nf |
⊢ Ⅎ 𝑘 𝐹 |
| 2 |
|
clim0cf.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
clim0cf.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
clim0cf.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 5 |
|
clim0cf.fv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
| 6 |
|
clim0cf.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 7 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 8 |
1 2 3 4 5 7 6
|
clim2cf |
⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) ) |
| 9 |
2
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 10 |
6
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐵 − 0 ) = 𝐵 ) |
| 11 |
10
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) ) |
| 12 |
11
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 13 |
9 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 14 |
13
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 15 |
14
|
ralbidva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 16 |
15
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) ) |
| 18 |
8 17
|
bitrd |
⊢ ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) ) |