Metamath Proof Explorer


Theorem clim0cf

Description: Express the predicate F converges to 0 . Similar to clim , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim0cf.nf 𝑘 𝐹
clim0cf.z 𝑍 = ( ℤ𝑀 )
clim0cf.m ( 𝜑𝑀 ∈ ℤ )
clim0cf.f ( 𝜑𝐹𝑉 )
clim0cf.fv ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
clim0cf.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion clim0cf ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 clim0cf.nf 𝑘 𝐹
2 clim0cf.z 𝑍 = ( ℤ𝑀 )
3 clim0cf.m ( 𝜑𝑀 ∈ ℤ )
4 clim0cf.f ( 𝜑𝐹𝑉 )
5 clim0cf.fv ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
6 clim0cf.b ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
7 0cnd ( 𝜑 → 0 ∈ ℂ )
8 1 2 3 4 5 7 6 clim2cf ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ) )
9 2 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
10 6 subid1d ( ( 𝜑𝑘𝑍 ) → ( 𝐵 − 0 ) = 𝐵 )
11 10 fveq2d ( ( 𝜑𝑘𝑍 ) → ( abs ‘ ( 𝐵 − 0 ) ) = ( abs ‘ 𝐵 ) )
12 11 breq1d ( ( 𝜑𝑘𝑍 ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) )
13 9 12 sylan2 ( ( 𝜑 ∧ ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) )
14 13 anassrs ( ( ( 𝜑𝑗𝑍 ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ( abs ‘ 𝐵 ) < 𝑥 ) )
15 14 ralbidva ( ( 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )
16 15 rexbidva ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )
17 16 ralbidv ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ ( 𝐵 − 0 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )
18 8 17 bitrd ( 𝜑 → ( 𝐹 ⇝ 0 ↔ ∀ 𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( abs ‘ 𝐵 ) < 𝑥 ) )