| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limclr.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
limclr.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 3 |
|
limclr.j |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
| 4 |
|
limclr.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 5 |
|
limclr.lp1 |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ) |
| 6 |
|
limclr.lp2 |
⊢ ( 𝜑 → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( 𝐵 (,) +∞ ) ) ) ) |
| 7 |
|
limclr.l |
⊢ ( 𝜑 → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 8 |
|
limclr.r |
⊢ ( 𝜑 → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) limℂ 𝐵 ) ) |
| 9 |
|
neqne |
⊢ ( ¬ 𝐿 = 𝑅 → 𝐿 ≠ 𝑅 ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝐴 ⊆ ℝ ) |
| 11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( 𝐵 (,) +∞ ) ) ) ) |
| 14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 15 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) limℂ 𝐵 ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → 𝐿 ≠ 𝑅 ) |
| 17 |
1 10 3 11 12 13 14 15 16
|
limclner |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → ( 𝐹 limℂ 𝐵 ) = ∅ ) |
| 18 |
|
nne |
⊢ ( ¬ ( 𝐹 limℂ 𝐵 ) ≠ ∅ ↔ ( 𝐹 limℂ 𝐵 ) = ∅ ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐿 ≠ 𝑅 ) → ¬ ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |
| 20 |
9 19
|
sylan2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐿 = 𝑅 ) → ¬ ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |
| 21 |
20
|
ex |
⊢ ( 𝜑 → ( ¬ 𝐿 = 𝑅 → ¬ ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) ) |
| 22 |
21
|
con4d |
⊢ ( 𝜑 → ( ( 𝐹 limℂ 𝐵 ) ≠ ∅ → 𝐿 = 𝑅 ) ) |
| 23 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝐴 ⊆ ℝ ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 25 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 26 |
3 25
|
eqeltri |
⊢ 𝐽 ∈ Top |
| 27 |
|
inss2 |
⊢ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ( -∞ (,) 𝐵 ) |
| 28 |
|
ioossre |
⊢ ( -∞ (,) 𝐵 ) ⊆ ℝ |
| 29 |
27 28
|
sstri |
⊢ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ |
| 30 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 31 |
3
|
eqcomi |
⊢ ( topGen ‘ ran (,) ) = 𝐽 |
| 32 |
31
|
unieqi |
⊢ ∪ ( topGen ‘ ran (,) ) = ∪ 𝐽 |
| 33 |
30 32
|
eqtri |
⊢ ℝ = ∪ 𝐽 |
| 34 |
33
|
lpss |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ ) → ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ⊆ ℝ ) |
| 35 |
26 29 34
|
mp2an |
⊢ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ⊆ ℝ |
| 36 |
35 5
|
sselid |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝐵 ∈ ℝ ) |
| 38 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) limℂ 𝐵 ) ) |
| 39 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) limℂ 𝐵 ) ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝐿 = 𝑅 ) |
| 41 |
1 23 3 24 37 38 39 40
|
limcleqr |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 42 |
41
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝐿 = 𝑅 ) → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) |
| 43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝐿 = 𝑅 → ( 𝐹 limℂ 𝐵 ) ≠ ∅ ) ) |
| 44 |
22 43
|
impbid |
⊢ ( 𝜑 → ( ( 𝐹 limℂ 𝐵 ) ≠ ∅ ↔ 𝐿 = 𝑅 ) ) |
| 45 |
41
|
ex |
⊢ ( 𝜑 → ( 𝐿 = 𝑅 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
| 46 |
44 45
|
jca |
⊢ ( 𝜑 → ( ( ( 𝐹 limℂ 𝐵 ) ≠ ∅ ↔ 𝐿 = 𝑅 ) ∧ ( 𝐿 = 𝑅 → 𝐿 ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |