Metamath Proof Explorer


Theorem limclr

Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limclr.k 𝐾 = ( TopOpen ‘ ℂfld )
limclr.a ( 𝜑𝐴 ⊆ ℝ )
limclr.j 𝐽 = ( topGen ‘ ran (,) )
limclr.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
limclr.lp1 ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) )
limclr.lp2 ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( 𝐵 (,) +∞ ) ) ) )
limclr.l ( 𝜑𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) lim 𝐵 ) )
limclr.r ( 𝜑𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) lim 𝐵 ) )
Assertion limclr ( 𝜑 → ( ( ( 𝐹 lim 𝐵 ) ≠ ∅ ↔ 𝐿 = 𝑅 ) ∧ ( 𝐿 = 𝑅𝐿 ∈ ( 𝐹 lim 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 limclr.k 𝐾 = ( TopOpen ‘ ℂfld )
2 limclr.a ( 𝜑𝐴 ⊆ ℝ )
3 limclr.j 𝐽 = ( topGen ‘ ran (,) )
4 limclr.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
5 limclr.lp1 ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) )
6 limclr.lp2 ( 𝜑𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( 𝐵 (,) +∞ ) ) ) )
7 limclr.l ( 𝜑𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) lim 𝐵 ) )
8 limclr.r ( 𝜑𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) lim 𝐵 ) )
9 neqne ( ¬ 𝐿 = 𝑅𝐿𝑅 )
10 2 adantr ( ( 𝜑𝐿𝑅 ) → 𝐴 ⊆ ℝ )
11 4 adantr ( ( 𝜑𝐿𝑅 ) → 𝐹 : 𝐴 ⟶ ℂ )
12 5 adantr ( ( 𝜑𝐿𝑅 ) → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) )
13 6 adantr ( ( 𝜑𝐿𝑅 ) → 𝐵 ∈ ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( 𝐵 (,) +∞ ) ) ) )
14 7 adantr ( ( 𝜑𝐿𝑅 ) → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) lim 𝐵 ) )
15 8 adantr ( ( 𝜑𝐿𝑅 ) → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) lim 𝐵 ) )
16 simpr ( ( 𝜑𝐿𝑅 ) → 𝐿𝑅 )
17 1 10 3 11 12 13 14 15 16 limclner ( ( 𝜑𝐿𝑅 ) → ( 𝐹 lim 𝐵 ) = ∅ )
18 nne ( ¬ ( 𝐹 lim 𝐵 ) ≠ ∅ ↔ ( 𝐹 lim 𝐵 ) = ∅ )
19 17 18 sylibr ( ( 𝜑𝐿𝑅 ) → ¬ ( 𝐹 lim 𝐵 ) ≠ ∅ )
20 9 19 sylan2 ( ( 𝜑 ∧ ¬ 𝐿 = 𝑅 ) → ¬ ( 𝐹 lim 𝐵 ) ≠ ∅ )
21 20 ex ( 𝜑 → ( ¬ 𝐿 = 𝑅 → ¬ ( 𝐹 lim 𝐵 ) ≠ ∅ ) )
22 21 con4d ( 𝜑 → ( ( 𝐹 lim 𝐵 ) ≠ ∅ → 𝐿 = 𝑅 ) )
23 2 adantr ( ( 𝜑𝐿 = 𝑅 ) → 𝐴 ⊆ ℝ )
24 4 adantr ( ( 𝜑𝐿 = 𝑅 ) → 𝐹 : 𝐴 ⟶ ℂ )
25 retop ( topGen ‘ ran (,) ) ∈ Top
26 3 25 eqeltri 𝐽 ∈ Top
27 inss2 ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ( -∞ (,) 𝐵 )
28 ioossre ( -∞ (,) 𝐵 ) ⊆ ℝ
29 27 28 sstri ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ
30 uniretop ℝ = ( topGen ‘ ran (,) )
31 3 eqcomi ( topGen ‘ ran (,) ) = 𝐽
32 31 unieqi ( topGen ‘ ran (,) ) = 𝐽
33 30 32 eqtri ℝ = 𝐽
34 33 lpss ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ⊆ ℝ ) → ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ⊆ ℝ )
35 26 29 34 mp2an ( ( limPt ‘ 𝐽 ) ‘ ( 𝐴 ∩ ( -∞ (,) 𝐵 ) ) ) ⊆ ℝ
36 35 5 sseldi ( 𝜑𝐵 ∈ ℝ )
37 36 adantr ( ( 𝜑𝐿 = 𝑅 ) → 𝐵 ∈ ℝ )
38 7 adantr ( ( 𝜑𝐿 = 𝑅 ) → 𝐿 ∈ ( ( 𝐹 ↾ ( -∞ (,) 𝐵 ) ) lim 𝐵 ) )
39 8 adantr ( ( 𝜑𝐿 = 𝑅 ) → 𝑅 ∈ ( ( 𝐹 ↾ ( 𝐵 (,) +∞ ) ) lim 𝐵 ) )
40 simpr ( ( 𝜑𝐿 = 𝑅 ) → 𝐿 = 𝑅 )
41 1 23 3 24 37 38 39 40 limcleqr ( ( 𝜑𝐿 = 𝑅 ) → 𝐿 ∈ ( 𝐹 lim 𝐵 ) )
42 41 ne0d ( ( 𝜑𝐿 = 𝑅 ) → ( 𝐹 lim 𝐵 ) ≠ ∅ )
43 42 ex ( 𝜑 → ( 𝐿 = 𝑅 → ( 𝐹 lim 𝐵 ) ≠ ∅ ) )
44 22 43 impbid ( 𝜑 → ( ( 𝐹 lim 𝐵 ) ≠ ∅ ↔ 𝐿 = 𝑅 ) )
45 41 ex ( 𝜑 → ( 𝐿 = 𝑅𝐿 ∈ ( 𝐹 lim 𝐵 ) ) )
46 44 45 jca ( 𝜑 → ( ( ( 𝐹 lim 𝐵 ) ≠ ∅ ↔ 𝐿 = 𝑅 ) ∧ ( 𝐿 = 𝑅𝐿 ∈ ( 𝐹 lim 𝐵 ) ) ) )