| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limclr.k |  | 
						
							| 2 |  | limclr.a |  | 
						
							| 3 |  | limclr.j |  | 
						
							| 4 |  | limclr.f |  | 
						
							| 5 |  | limclr.lp1 |  | 
						
							| 6 |  | limclr.lp2 |  | 
						
							| 7 |  | limclr.l |  | 
						
							| 8 |  | limclr.r |  | 
						
							| 9 |  | neqne |  | 
						
							| 10 | 2 | adantr |  | 
						
							| 11 | 4 | adantr |  | 
						
							| 12 | 5 | adantr |  | 
						
							| 13 | 6 | adantr |  | 
						
							| 14 | 7 | adantr |  | 
						
							| 15 | 8 | adantr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 1 10 3 11 12 13 14 15 16 | limclner |  | 
						
							| 18 |  | nne |  | 
						
							| 19 | 17 18 | sylibr |  | 
						
							| 20 | 9 19 | sylan2 |  | 
						
							| 21 | 20 | ex |  | 
						
							| 22 | 21 | con4d |  | 
						
							| 23 | 2 | adantr |  | 
						
							| 24 | 4 | adantr |  | 
						
							| 25 |  | retop |  | 
						
							| 26 | 3 25 | eqeltri |  | 
						
							| 27 |  | inss2 |  | 
						
							| 28 |  | ioossre |  | 
						
							| 29 | 27 28 | sstri |  | 
						
							| 30 |  | uniretop |  | 
						
							| 31 | 3 | eqcomi |  | 
						
							| 32 | 31 | unieqi |  | 
						
							| 33 | 30 32 | eqtri |  | 
						
							| 34 | 33 | lpss |  | 
						
							| 35 | 26 29 34 | mp2an |  | 
						
							| 36 | 35 5 | sselid |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 7 | adantr |  | 
						
							| 39 | 8 | adantr |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 1 23 3 24 37 38 39 40 | limcleqr |  | 
						
							| 42 | 41 | ne0d |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 22 43 | impbid |  | 
						
							| 45 | 41 | ex |  | 
						
							| 46 | 44 45 | jca |  |