Metamath Proof Explorer


Theorem limclr

Description: For a limit point, both from the left and from the right, of the domain, the limit of the function exits only if the left and the right limits are equal. In this case, the three limits coincide. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limclr.k K=TopOpenfld
limclr.a φA
limclr.j J=topGenran.
limclr.f φF:A
limclr.lp1 φBlimPtJA−∞B
limclr.lp2 φBlimPtJAB+∞
limclr.l φLF−∞BlimB
limclr.r φRFB+∞limB
Assertion limclr φFlimBL=RL=RLFlimB

Proof

Step Hyp Ref Expression
1 limclr.k K=TopOpenfld
2 limclr.a φA
3 limclr.j J=topGenran.
4 limclr.f φF:A
5 limclr.lp1 φBlimPtJA−∞B
6 limclr.lp2 φBlimPtJAB+∞
7 limclr.l φLF−∞BlimB
8 limclr.r φRFB+∞limB
9 neqne ¬L=RLR
10 2 adantr φLRA
11 4 adantr φLRF:A
12 5 adantr φLRBlimPtJA−∞B
13 6 adantr φLRBlimPtJAB+∞
14 7 adantr φLRLF−∞BlimB
15 8 adantr φLRRFB+∞limB
16 simpr φLRLR
17 1 10 3 11 12 13 14 15 16 limclner φLRFlimB=
18 nne ¬FlimBFlimB=
19 17 18 sylibr φLR¬FlimB
20 9 19 sylan2 φ¬L=R¬FlimB
21 20 ex φ¬L=R¬FlimB
22 21 con4d φFlimBL=R
23 2 adantr φL=RA
24 4 adantr φL=RF:A
25 retop topGenran.Top
26 3 25 eqeltri JTop
27 inss2 A−∞B−∞B
28 ioossre −∞B
29 27 28 sstri A−∞B
30 uniretop =topGenran.
31 3 eqcomi topGenran.=J
32 31 unieqi topGenran.=J
33 30 32 eqtri =J
34 33 lpss JTopA−∞BlimPtJA−∞B
35 26 29 34 mp2an limPtJA−∞B
36 35 5 sselid φB
37 36 adantr φL=RB
38 7 adantr φL=RLF−∞BlimB
39 8 adantr φL=RRFB+∞limB
40 simpr φL=RL=R
41 1 23 3 24 37 38 39 40 limcleqr φL=RLFlimB
42 41 ne0d φL=RFlimB
43 42 ex φL=RFlimB
44 22 43 impbid φFlimBL=R
45 41 ex φL=RLFlimB
46 44 45 jca φFlimBL=RL=RLFlimB