Metamath Proof Explorer


Theorem divlimc

Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses divlimc.f F = x A B
divlimc.g G = x A C
divlimc.h H = x A B C
divlimc.b φ x A B
divlimc.c φ x A C 0
divlimc.x φ X F lim D
divlimc.y φ Y G lim D
divlimc.yne0 φ Y 0
divlimc.cne0 φ x A C 0
Assertion divlimc φ X Y H lim D

Proof

Step Hyp Ref Expression
1 divlimc.f F = x A B
2 divlimc.g G = x A C
3 divlimc.h H = x A B C
4 divlimc.b φ x A B
5 divlimc.c φ x A C 0
6 divlimc.x φ X F lim D
7 divlimc.y φ Y G lim D
8 divlimc.yne0 φ Y 0
9 divlimc.cne0 φ x A C 0
10 eqid x A 1 C = x A 1 C
11 eqid x A B 1 C = x A B 1 C
12 5 eldifad φ x A C
13 12 9 reccld φ x A 1 C
14 2 10 5 7 8 reclimc φ 1 Y x A 1 C lim D
15 1 10 11 4 13 6 14 mullimc φ X 1 Y x A B 1 C lim D
16 limccl F lim D
17 16 6 sseldi φ X
18 limccl G lim D
19 18 7 sseldi φ Y
20 17 19 8 divrecd φ X Y = X 1 Y
21 4 12 9 divrecd φ x A B C = B 1 C
22 21 mpteq2dva φ x A B C = x A B 1 C
23 3 22 syl5eq φ H = x A B 1 C
24 23 oveq1d φ H lim D = x A B 1 C lim D
25 15 20 24 3eltr4d φ X Y H lim D