| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divlimc.f |
|
| 2 |
|
divlimc.g |
|
| 3 |
|
divlimc.h |
|
| 4 |
|
divlimc.b |
|
| 5 |
|
divlimc.c |
|
| 6 |
|
divlimc.x |
|
| 7 |
|
divlimc.y |
|
| 8 |
|
divlimc.yne0 |
|
| 9 |
|
divlimc.cne0 |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
5
|
eldifad |
|
| 13 |
12 9
|
reccld |
|
| 14 |
2 10 5 7 8
|
reclimc |
|
| 15 |
1 10 11 4 13 6 14
|
mullimc |
|
| 16 |
|
limccl |
|
| 17 |
16 6
|
sselid |
|
| 18 |
|
limccl |
|
| 19 |
18 7
|
sselid |
|
| 20 |
17 19 8
|
divrecd |
|
| 21 |
4 12 9
|
divrecd |
|
| 22 |
21
|
mpteq2dva |
|
| 23 |
3 22
|
eqtrid |
|
| 24 |
23
|
oveq1d |
|
| 25 |
15 20 24
|
3eltr4d |
|