Metamath Proof Explorer


Theorem expfac

Description: Factorial grows faster than exponential. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypothesis expfac.f F=n0Ann!
Assertion expfac AF0

Proof

Step Hyp Ref Expression
1 expfac.f F=n0Ann!
2 nn0uz 0=0
3 0zd A0
4 nn0ex 0V
5 4 mptex n0Ann!V
6 1 5 eqeltri FV
7 6 a1i AFV
8 1 efcllem Aseq0+Fdom
9 oveq2 n=mAn=Am
10 fveq2 n=mn!=m!
11 9 10 oveq12d n=mAnn!=Amm!
12 simpr Am0m0
13 eftcl Am0Amm!
14 1 11 12 13 fvmptd3 Am0Fm=Amm!
15 14 13 eqeltrd Am0Fm
16 2 3 7 8 15 serf0 AF0