| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divlimc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 2 |
|
divlimc.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 3 |
|
divlimc.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) |
| 4 |
|
divlimc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 5 |
|
divlimc.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) |
| 6 |
|
divlimc.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐹 limℂ 𝐷 ) ) |
| 7 |
|
divlimc.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 limℂ 𝐷 ) ) |
| 8 |
|
divlimc.yne0 |
⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 9 |
|
divlimc.cne0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
| 10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 12 |
5
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 13 |
12 9
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 / 𝐶 ) ∈ ℂ ) |
| 14 |
2 10 5 7 8
|
reclimc |
⊢ ( 𝜑 → ( 1 / 𝑌 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 1 / 𝐶 ) ) limℂ 𝐷 ) ) |
| 15 |
1 10 11 4 13 6 14
|
mullimc |
⊢ ( 𝜑 → ( 𝑋 · ( 1 / 𝑌 ) ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) |
| 16 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ℂ |
| 17 |
16 6
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 18 |
|
limccl |
⊢ ( 𝐺 limℂ 𝐷 ) ⊆ ℂ |
| 19 |
18 7
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 20 |
17 19 8
|
divrecd |
⊢ ( 𝜑 → ( 𝑋 / 𝑌 ) = ( 𝑋 · ( 1 / 𝑌 ) ) ) |
| 21 |
4 12 9
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 22 |
21
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 23 |
3 22
|
eqtrid |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝜑 → ( 𝐻 limℂ 𝐷 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) limℂ 𝐷 ) ) |
| 25 |
15 20 24
|
3eltr4d |
⊢ ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ ( 𝐻 limℂ 𝐷 ) ) |