Metamath Proof Explorer


Theorem divlimc

Description: Limit of the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses divlimc.f 𝐹 = ( 𝑥𝐴𝐵 )
divlimc.g 𝐺 = ( 𝑥𝐴𝐶 )
divlimc.h 𝐻 = ( 𝑥𝐴 ↦ ( 𝐵 / 𝐶 ) )
divlimc.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
divlimc.c ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) )
divlimc.x ( 𝜑𝑋 ∈ ( 𝐹 lim 𝐷 ) )
divlimc.y ( 𝜑𝑌 ∈ ( 𝐺 lim 𝐷 ) )
divlimc.yne0 ( 𝜑𝑌 ≠ 0 )
divlimc.cne0 ( ( 𝜑𝑥𝐴 ) → 𝐶 ≠ 0 )
Assertion divlimc ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ ( 𝐻 lim 𝐷 ) )

Proof

Step Hyp Ref Expression
1 divlimc.f 𝐹 = ( 𝑥𝐴𝐵 )
2 divlimc.g 𝐺 = ( 𝑥𝐴𝐶 )
3 divlimc.h 𝐻 = ( 𝑥𝐴 ↦ ( 𝐵 / 𝐶 ) )
4 divlimc.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
5 divlimc.c ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) )
6 divlimc.x ( 𝜑𝑋 ∈ ( 𝐹 lim 𝐷 ) )
7 divlimc.y ( 𝜑𝑌 ∈ ( 𝐺 lim 𝐷 ) )
8 divlimc.yne0 ( 𝜑𝑌 ≠ 0 )
9 divlimc.cne0 ( ( 𝜑𝑥𝐴 ) → 𝐶 ≠ 0 )
10 eqid ( 𝑥𝐴 ↦ ( 1 / 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 1 / 𝐶 ) )
11 eqid ( 𝑥𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) = ( 𝑥𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) )
12 5 eldifad ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
13 12 9 reccld ( ( 𝜑𝑥𝐴 ) → ( 1 / 𝐶 ) ∈ ℂ )
14 2 10 5 7 8 reclimc ( 𝜑 → ( 1 / 𝑌 ) ∈ ( ( 𝑥𝐴 ↦ ( 1 / 𝐶 ) ) lim 𝐷 ) )
15 1 10 11 4 13 6 14 mullimc ( 𝜑 → ( 𝑋 · ( 1 / 𝑌 ) ) ∈ ( ( 𝑥𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) lim 𝐷 ) )
16 limccl ( 𝐹 lim 𝐷 ) ⊆ ℂ
17 16 6 sseldi ( 𝜑𝑋 ∈ ℂ )
18 limccl ( 𝐺 lim 𝐷 ) ⊆ ℂ
19 18 7 sseldi ( 𝜑𝑌 ∈ ℂ )
20 17 19 8 divrecd ( 𝜑 → ( 𝑋 / 𝑌 ) = ( 𝑋 · ( 1 / 𝑌 ) ) )
21 4 12 9 divrecd ( ( 𝜑𝑥𝐴 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) )
22 21 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 / 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) )
23 3 22 syl5eq ( 𝜑𝐻 = ( 𝑥𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) )
24 23 oveq1d ( 𝜑 → ( 𝐻 lim 𝐷 ) = ( ( 𝑥𝐴 ↦ ( 𝐵 · ( 1 / 𝐶 ) ) ) lim 𝐷 ) )
25 15 20 24 3eltr4d ( 𝜑 → ( 𝑋 / 𝑌 ) ∈ ( 𝐻 lim 𝐷 ) )