| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divlimc.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
divlimc.g |
|- G = ( x e. A |-> C ) |
| 3 |
|
divlimc.h |
|- H = ( x e. A |-> ( B / C ) ) |
| 4 |
|
divlimc.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
| 5 |
|
divlimc.c |
|- ( ( ph /\ x e. A ) -> C e. ( CC \ { 0 } ) ) |
| 6 |
|
divlimc.x |
|- ( ph -> X e. ( F limCC D ) ) |
| 7 |
|
divlimc.y |
|- ( ph -> Y e. ( G limCC D ) ) |
| 8 |
|
divlimc.yne0 |
|- ( ph -> Y =/= 0 ) |
| 9 |
|
divlimc.cne0 |
|- ( ( ph /\ x e. A ) -> C =/= 0 ) |
| 10 |
|
eqid |
|- ( x e. A |-> ( 1 / C ) ) = ( x e. A |-> ( 1 / C ) ) |
| 11 |
|
eqid |
|- ( x e. A |-> ( B x. ( 1 / C ) ) ) = ( x e. A |-> ( B x. ( 1 / C ) ) ) |
| 12 |
5
|
eldifad |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
| 13 |
12 9
|
reccld |
|- ( ( ph /\ x e. A ) -> ( 1 / C ) e. CC ) |
| 14 |
2 10 5 7 8
|
reclimc |
|- ( ph -> ( 1 / Y ) e. ( ( x e. A |-> ( 1 / C ) ) limCC D ) ) |
| 15 |
1 10 11 4 13 6 14
|
mullimc |
|- ( ph -> ( X x. ( 1 / Y ) ) e. ( ( x e. A |-> ( B x. ( 1 / C ) ) ) limCC D ) ) |
| 16 |
|
limccl |
|- ( F limCC D ) C_ CC |
| 17 |
16 6
|
sselid |
|- ( ph -> X e. CC ) |
| 18 |
|
limccl |
|- ( G limCC D ) C_ CC |
| 19 |
18 7
|
sselid |
|- ( ph -> Y e. CC ) |
| 20 |
17 19 8
|
divrecd |
|- ( ph -> ( X / Y ) = ( X x. ( 1 / Y ) ) ) |
| 21 |
4 12 9
|
divrecd |
|- ( ( ph /\ x e. A ) -> ( B / C ) = ( B x. ( 1 / C ) ) ) |
| 22 |
21
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( B / C ) ) = ( x e. A |-> ( B x. ( 1 / C ) ) ) ) |
| 23 |
3 22
|
eqtrid |
|- ( ph -> H = ( x e. A |-> ( B x. ( 1 / C ) ) ) ) |
| 24 |
23
|
oveq1d |
|- ( ph -> ( H limCC D ) = ( ( x e. A |-> ( B x. ( 1 / C ) ) ) limCC D ) ) |
| 25 |
15 20 24
|
3eltr4d |
|- ( ph -> ( X / Y ) e. ( H limCC D ) ) |