Metamath Proof Explorer


Theorem clim0cf

Description: Express the predicate F converges to 0 . Similar to clim , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim0cf.nf _kF
clim0cf.z Z=M
clim0cf.m φM
clim0cf.f φFV
clim0cf.fv φkZFk=B
clim0cf.b φkZB
Assertion clim0cf φF0x+jZkjB<x

Proof

Step Hyp Ref Expression
1 clim0cf.nf _kF
2 clim0cf.z Z=M
3 clim0cf.m φM
4 clim0cf.f φFV
5 clim0cf.fv φkZFk=B
6 clim0cf.b φkZB
7 0cnd φ0
8 1 2 3 4 5 7 6 clim2cf φF0x+jZkjB0<x
9 2 uztrn2 jZkjkZ
10 6 subid1d φkZB0=B
11 10 fveq2d φkZB0=B
12 11 breq1d φkZB0<xB<x
13 9 12 sylan2 φjZkjB0<xB<x
14 13 anassrs φjZkjB0<xB<x
15 14 ralbidva φjZkjB0<xkjB<x
16 15 rexbidva φjZkjB0<xjZkjB<x
17 16 ralbidv φx+jZkjB0<xx+jZkjB<x
18 8 17 bitrd φF0x+jZkjB<x