Metamath Proof Explorer


Theorem addlimc

Description: Sum of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses addlimc.f F=xAB
addlimc.g G=xAC
addlimc.h H=xAB+C
addlimc.b φxAB
addlimc.c φxAC
addlimc.e φEFlimD
addlimc.i φIGlimD
Assertion addlimc φE+IHlimD

Proof

Step Hyp Ref Expression
1 addlimc.f F=xAB
2 addlimc.g G=xAC
3 addlimc.h H=xAB+C
4 addlimc.b φxAB
5 addlimc.c φxAC
6 addlimc.e φEFlimD
7 addlimc.i φIGlimD
8 limccl FlimD
9 8 6 sselid φE
10 limccl GlimD
11 10 7 sselid φI
12 9 11 addcld φE+I
13 4 1 fmptd φF:A
14 1 4 6 limcmptdm φA
15 limcrcl EFlimDF:domFdomFD
16 6 15 syl φF:domFdomFD
17 16 simp3d φD
18 13 14 17 ellimc3 φEFlimDEz+a+vAvDvD<aFvE<z
19 6 18 mpbid φEz+a+vAvDvD<aFvE<z
20 19 simprd φz+a+vAvDvD<aFvE<z
21 rphalfcl y+y2+
22 breq2 z=y2FvE<zFvE<y2
23 22 imbi2d z=y2vDvD<aFvE<zvDvD<aFvE<y2
24 23 rexralbidv z=y2a+vAvDvD<aFvE<za+vAvDvD<aFvE<y2
25 24 rspccva z+a+vAvDvD<aFvE<zy2+a+vAvDvD<aFvE<y2
26 20 21 25 syl2an φy+a+vAvDvD<aFvE<y2
27 5 2 fmptd φG:A
28 27 14 17 ellimc3 φIGlimDIz+b+vAvDvD<bGvI<z
29 7 28 mpbid φIz+b+vAvDvD<bGvI<z
30 29 simprd φz+b+vAvDvD<bGvI<z
31 breq2 z=y2GvI<zGvI<y2
32 31 imbi2d z=y2vDvD<bGvI<zvDvD<bGvI<y2
33 32 rexralbidv z=y2b+vAvDvD<bGvI<zb+vAvDvD<bGvI<y2
34 33 rspccva z+b+vAvDvD<bGvI<zy2+b+vAvDvD<bGvI<y2
35 30 21 34 syl2an φy+b+vAvDvD<bGvI<y2
36 reeanv a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2a+vAvDvD<aFvE<y2b+vAvDvD<bGvI<y2
37 26 35 36 sylanbrc φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2
38 ifcl a+b+ifabab+
39 38 3ad2ant2 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2ifabab+
40 nfv vφy+
41 nfv va+b+
42 nfra1 vvAvDvD<aFvE<y2
43 nfra1 vvAvDvD<bGvI<y2
44 42 43 nfan vvAvDvD<aFvE<y2vAvDvD<bGvI<y2
45 40 41 44 nf3an vφy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2
46 simp11l φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababφ
47 simp2 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvA
48 46 47 jca φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababφvA
49 rpre y+y
50 49 adantl φy+y
51 50 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2y
52 51 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababy
53 simp13l φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvAvDvD<aFvE<y2
54 simp3l φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvD
55 14 sselda φvAv
56 46 47 55 syl2anc φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababv
57 46 17 syl φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababD
58 56 57 subcld φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvD
59 58 abscld φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvD
60 39 rpred φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2ifabab
61 60 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababifabab
62 simpl a+b+a+
63 62 rpred a+b+a
64 63 3ad2ant2 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2a
65 64 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababa
66 simp3r φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvD<ifabab
67 simpr a+b+b+
68 67 rpred a+b+b
69 min1 abifababa
70 63 68 69 syl2anc a+b+ifababa
71 70 3ad2ant2 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2ifababa
72 71 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababifababa
73 59 61 65 66 72 ltletrd φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvD<a
74 54 73 jca φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvDvD<a
75 rsp vAvDvD<aFvE<y2vAvDvD<aFvE<y2
76 53 47 74 75 syl3c φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababFvE<y2
77 48 52 76 jca31 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababφvAyFvE<y2
78 simp13r φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvAvDvD<bGvI<y2
79 68 3ad2ant2 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2b
80 79 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababb
81 min2 abifababb
82 63 68 81 syl2anc a+b+ifababb
83 82 3ad2ant2 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2ifababb
84 83 3ad2ant1 φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababifababb
85 59 61 80 66 84 ltletrd φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvD<b
86 54 85 jca φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababvDvD<b
87 rsp vAvDvD<bGvI<y2vAvDvD<bGvI<y2
88 78 47 86 87 syl3c φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababGvI<y2
89 4 5 addcld φxAB+C
90 89 3 fmptd φH:A
91 90 ffvelcdmda φvAHv
92 91 ad3antrrr φvAyFvE<y2GvI<y2Hv
93 simp-4l φvAyFvE<y2GvI<y2φ
94 93 12 syl φvAyFvE<y2GvI<y2E+I
95 92 94 subcld φvAyFvE<y2GvI<y2HvE+I
96 95 abscld φvAyFvE<y2GvI<y2HvE+I
97 13 ffvelcdmda φvAFv
98 97 ad3antrrr φvAyFvE<y2GvI<y2Fv
99 93 9 syl φvAyFvE<y2GvI<y2E
100 98 99 subcld φvAyFvE<y2GvI<y2FvE
101 100 abscld φvAyFvE<y2GvI<y2FvE
102 27 ffvelcdmda φvAGv
103 102 ad3antrrr φvAyFvE<y2GvI<y2Gv
104 93 11 syl φvAyFvE<y2GvI<y2I
105 103 104 subcld φvAyFvE<y2GvI<y2GvI
106 105 abscld φvAyFvE<y2GvI<y2GvI
107 101 106 readdcld φvAyFvE<y2GvI<y2FvE+GvI
108 simpllr φvAyFvE<y2GvI<y2y
109 nfv xφvA
110 nfmpt1 _xxAB+C
111 3 110 nfcxfr _xH
112 nfcv _xv
113 111 112 nffv _xHv
114 nfmpt1 _xxAB
115 1 114 nfcxfr _xF
116 115 112 nffv _xFv
117 nfcv _x+
118 nfmpt1 _xxAC
119 2 118 nfcxfr _xG
120 119 112 nffv _xGv
121 116 117 120 nfov _xFv+Gv
122 113 121 nfeq xHv=Fv+Gv
123 109 122 nfim xφvAHv=Fv+Gv
124 eleq1w x=vxAvA
125 124 anbi2d x=vφxAφvA
126 fveq2 x=vHx=Hv
127 fveq2 x=vFx=Fv
128 fveq2 x=vGx=Gv
129 127 128 oveq12d x=vFx+Gx=Fv+Gv
130 126 129 eqeq12d x=vHx=Fx+GxHv=Fv+Gv
131 125 130 imbi12d x=vφxAHx=Fx+GxφvAHv=Fv+Gv
132 simpr φxAxA
133 3 fvmpt2 xAB+CHx=B+C
134 132 89 133 syl2anc φxAHx=B+C
135 1 fvmpt2 xABFx=B
136 132 4 135 syl2anc φxAFx=B
137 136 eqcomd φxAB=Fx
138 2 fvmpt2 xACGx=C
139 132 5 138 syl2anc φxAGx=C
140 139 eqcomd φxAC=Gx
141 137 140 oveq12d φxAB+C=Fx+Gx
142 134 141 eqtrd φxAHx=Fx+Gx
143 123 131 142 chvarfv φvAHv=Fv+Gv
144 143 ad3antrrr φvAyFvE<y2GvI<y2Hv=Fv+Gv
145 144 oveq1d φvAyFvE<y2GvI<y2HvE+I=Fv+Gv-E+I
146 98 103 99 104 addsub4d φvAyFvE<y2GvI<y2Fv+Gv-E+I=FvE+Gv-I
147 145 146 eqtrd φvAyFvE<y2GvI<y2HvE+I=FvE+Gv-I
148 147 fveq2d φvAyFvE<y2GvI<y2HvE+I=FvE+Gv-I
149 100 105 abstrid φvAyFvE<y2GvI<y2FvE+Gv-IFvE+GvI
150 148 149 eqbrtrd φvAyFvE<y2GvI<y2HvE+IFvE+GvI
151 simplr φvAyFvE<y2GvI<y2FvE<y2
152 simpr φvAyFvE<y2GvI<y2GvI<y2
153 101 106 108 151 152 lt2halvesd φvAyFvE<y2GvI<y2FvE+GvI<y
154 96 107 108 150 153 lelttrd φvAyFvE<y2GvI<y2HvE+I<y
155 77 88 154 syl2anc φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababHvE+I<y
156 155 3exp φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababHvE+I<y
157 45 156 ralrimi φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2vAvDvD<ifababHvE+I<y
158 brimralrspcev ifabab+vAvDvD<ifababHvE+I<yw+vAvDvD<wHvE+I<y
159 39 157 158 syl2anc φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2w+vAvDvD<wHvE+I<y
160 159 3exp φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2w+vAvDvD<wHvE+I<y
161 160 rexlimdvv φy+a+b+vAvDvD<aFvE<y2vAvDvD<bGvI<y2w+vAvDvD<wHvE+I<y
162 37 161 mpd φy+w+vAvDvD<wHvE+I<y
163 162 ralrimiva φy+w+vAvDvD<wHvE+I<y
164 90 14 17 ellimc3 φE+IHlimDE+Iy+w+vAvDvD<wHvE+I<y
165 12 163 164 mpbir2and φE+IHlimD