Metamath Proof Explorer


Theorem subrngid

Description: Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025)

Ref Expression
Hypothesis subrngss.1
|- B = ( Base ` R )
Assertion subrngid
|- ( R e. Rng -> B e. ( SubRng ` R ) )

Proof

Step Hyp Ref Expression
1 subrngss.1
 |-  B = ( Base ` R )
2 id
 |-  ( R e. Rng -> R e. Rng )
3 1 ressid
 |-  ( R e. Rng -> ( R |`s B ) = R )
4 3 2 eqeltrd
 |-  ( R e. Rng -> ( R |`s B ) e. Rng )
5 ssidd
 |-  ( R e. Rng -> B C_ B )
6 1 issubrng
 |-  ( B e. ( SubRng ` R ) <-> ( R e. Rng /\ ( R |`s B ) e. Rng /\ B C_ B ) )
7 2 4 5 6 syl3anbrc
 |-  ( R e. Rng -> B e. ( SubRng ` R ) )