| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negidd.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
pncand.2 |
|- ( ph -> B e. CC ) |
| 3 |
|
subaddd.3 |
|- ( ph -> C e. CC ) |
| 4 |
|
addsub4d.4 |
|- ( ph -> D e. CC ) |
| 5 |
1 2 3
|
sub32d |
|- ( ph -> ( ( A - B ) - C ) = ( ( A - C ) - B ) ) |
| 6 |
5
|
oveq1d |
|- ( ph -> ( ( ( A - B ) - C ) - D ) = ( ( ( A - C ) - B ) - D ) ) |
| 7 |
1 2
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 8 |
7 3 4
|
subsub4d |
|- ( ph -> ( ( ( A - B ) - C ) - D ) = ( ( A - B ) - ( C + D ) ) ) |
| 9 |
1 3
|
subcld |
|- ( ph -> ( A - C ) e. CC ) |
| 10 |
9 2 4
|
subsub4d |
|- ( ph -> ( ( ( A - C ) - B ) - D ) = ( ( A - C ) - ( B + D ) ) ) |
| 11 |
6 8 10
|
3eqtr3d |
|- ( ph -> ( ( A - B ) - ( C + D ) ) = ( ( A - C ) - ( B + D ) ) ) |