Metamath Proof Explorer


Theorem subsubadd23

Description: Swap the second and the third terms in a difference of a difference and a sum. (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
addsub4d.4 φ D
Assertion subsubadd23 φ A - B - C + D = A - C - B + D

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 addsub4d.4 φ D
5 1 2 3 sub32d φ A - B - C = A - C - B
6 5 oveq1d φ A B - C - D = A C - B - D
7 1 2 subcld φ A B
8 7 3 4 subsub4d φ A B - C - D = A - B - C + D
9 1 3 subcld φ A C
10 9 2 4 subsub4d φ A C - B - D = A - C - B + D
11 6 8 10 3eqtr3d φ A - B - C + D = A - C - B + D